Article

Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein

MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
Journal of General Virology (Impact Factor: 3.18). 10/2010; 91(Pt 10):2651-7. DOI: 10.1099/vir.0.024380-0
Source: PubMed

ABSTRACT

Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

Download full-text

Full-text

Available from: Markus Glatzel
  • Source
    • "One approach involves the experimental transmission of disease by inoculating homogenized brain tissue from affected animals into transgenic mice that are overexpressing 1 of the 2 common polymorphic forms of the human PrP (either methionine or valine at residue 129) on a mouse PrP null background (16). Such transgenic mice are fully susceptible to infection with human prions (16) and, to a lesser extent, cattle and ovine BSE prions (2,4,17), but appear resistant to chronic wasting disease prions from cervids (18–20). In this study, we inoculated transgenic mice that overexpressed human PrP with brain tissue from field sheep with natural cases of classical and atypical scrapie, sheep with serially-passaged experimental BSE, and cattle with BSE to assess the pathogenicity of natural scrapie prions relative to that of the known epizootic TSE agent, the cattle BSE prion strain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.
    Full-text · Article · Nov 2013 · Emerging Infectious Diseases
  • Source
    • "In neutral buffer conditions no conversion of human PrPC could be shown. Also bioassays in transgenic mice strengthen the assumption, that CWD is not transmissible to humans [50], [55]–[57]. Moreover, epidemiological studies cannot find a correlation between CWD and human prion diseases [43], [58]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prion diseases are transmissible spongiform encephalopathies in humans and animals, including scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in deer, and Creutzfeldt-Jakob disease (CJD) in humans. The hallmark of prion diseases is the conversion of the host-encoded prion protein (PrP(C)) to its pathological isoform PrP(Sc), which is accompanied by PrP fibrillation. Transmission is not restricted within one species, but can also occur between species. In some cases a species barrier can be observed that results in limited or unsuccessful transmission. The mechanism behind interspecies transmissibility or species barriers is not completely understood. To analyse this process at a molecular level, we previously established an in vitro fibrillation assay, in which recombinant PrP (recPrP) as substrate can be specifically seeded by PrP(Sc) as seed. Seeding with purified components, with no additional cellular components, is a direct consequence of the "prion-protein-only" hypothesis. We therefore hypothesise, that the species barrier is based on the interaction of PrP(C) and PrP(Sc). Whereas in our earlier studies, the interspecies transmission in animal systems was analysed, the focus of this study lies on the transmission from animals to humans. We therefore combined seeds from species cattle, sheep and deer (BSE, scrapie, CWD) with human recPrP. Homologous seeding served as a control. Our results are consistent with epidemiology, other in vitro aggregation studies, and bioassays investigating the transmission between humans, cattle, sheep, and deer. In contrast to CJD and BSE seeds, which show a seeding activity we can demonstrate a species barrier for seeds from scrapie and CWD in vitro. We could show that the seeding activity and therewith the molecular interaction of PrP as substrate and PrP(Sc) as seed is sufficient to explain the phenomenon of species barriers. Therefore our data supports the hypothesis that CWD is not transmissible to humans.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    • "However, similarly to our findings they did not achieve transmission of H-type BSE into Tg650 mice (Béringue et al., 2008). Previous studies have shown CWD TSEs do not transmit to mice overexpressing human PrP (Sandberg et al., 2010; Tamgüney et al., 2006). Furthermore, other studies investigating transmissibility of elk CWD TSEs, did not observe transmission into Tg40 mice (human PrP Tg) (Kong et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.
    Preview · Article · Apr 2012 · Journal of General Virology
Show more