Conidia but Not Yeast Cells of the Fungal Pathogen Histoplasma capsulatum Trigger a Type I Interferon Innate Immune Response in Murine Macrophages

Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-0414, USA.
Infection and immunity (Impact Factor: 3.73). 09/2010; 78(9):3871-82. DOI: 10.1128/IAI.00204-10
Source: PubMed


Histoplasma capsulatum is the most common cause of fungal respiratory infections and can lead to progressive disseminated infections, particularly in immunocompromised patients. Infection occurs upon inhalation of the aerosolized spores, known as conidia. Once inside the host, conidia are phagocytosed by alveolar macrophages. The conidia subsequently germinate and produce a budding yeast-like form that colonizes host macrophages and can disseminate throughout host organs and tissues. Even though conidia are the predominant infectious particle for H. capsulatum and are the first cell type encountered by the host during infection, very little is known at a molecular level about conidia or about their interaction with cells of the host immune system. We examined the interaction between conidia and host cells in a murine bone-marrow-derived macrophage model of infection. We used whole-genome expression profiling and quantitative reverse transcription-PCR (qRT-PCR) to monitor the macrophage signaling pathways that are modulated during infection with conidia. Our analysis revealed that type I interferon (IFN)-responsive genes and the beta type I IFN (IFN-beta) were induced in macrophages during infection with H. capsulatum conidia but not H. capsulatum yeast cells. Further analysis revealed that the type I IFN signature induced in macrophages in response to conidia is independent of Toll-like receptor (TLR) signaling and the cytosolic RNA sensor MAVS but is dependent on the transcription factor interferon regulatory factor 3 (IRF3). Interestingly, H. capsulatum growth was restricted in mice lacking the type I IFN receptor, indicating that an intact host type I IFN response is required for full virulence of H. capsulatum in mice.

Download full-text


Available from: Diane O Inglis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Not Available
    No preview · Conference Paper · Oct 1996
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we demonstrate a novel mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFN-α/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression. Interestingly, the initial IFN-β release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing adapter-inducing IFN-β and the β-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-β release is strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-β signaling. Furthermore, in a mouse model of disseminated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating the host immune response to C. glabrata.
    Full-text · Article · Mar 2011 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aspergillus fumigatus is a fungal pathogen of major clinical importance. However, little is known about the role of human bronchial epithelial cells (HBECs) during A. fumigatus conidia induced inflammation. Here, we show that differentiated respiratory epithelial cells recognise inactivated resting conidia but not swollen conidia or hyphae, resulting in the induction of the interferon (IFN)-β signalling pathway and the expression of IFN-β-inducible genes, such as IFN-γ-inducible protein (IP)-10. This induction was internalisation dependent. We identified double-stranded conidial RNA recognised by Toll-like receptor-3 as a factor responsible for the expression of IFN-β and IP-10. Inhibition of receptor-interacting protein-1/TANK-binding kinase-1, known to mediate IFN-β signalling, was sufficient to inhibit the induction of IFN-β and IP-10 expression by conidia. Even though conidia induced the activation of nuclear factor (NF)-κB in HBECs, IP-10 expression was only partially dependent on NF-κB signalling. These results provide evidence that respiratory cells are activated by the double-stranded RNA of resting conidia and initiate a first immune response to inhaled conidia in an IFN-β-dependent manner.
    Preview · Article · Jul 2011 · European Respiratory Journal
Show more