Design and testing of foods differing in protein to energy ratios

School of Biological Sciences, The University of Sydney, Rm 322, Heydon Laurence Building, A08, Sydney, NSW, Australia.
Appetite (Impact Factor: 2.69). 10/2010; 55(2):367-70. DOI: 10.1016/j.appet.2010.06.009
Source: PubMed


Our aim was to design a selection of foods with differing proportions of protein but equal palatability in two settings, Sydney Australia and Kingston Jamaica. The foods were manipulated to contain 10, 15 or 25% E as protein with reciprocal changes in carbohydrate to 60, 55 or 45% E and dietary fat was kept constant at 30%. Naïve participants did not identify a difference in protein between the versions. On average, the versions were rated equal in pleasantness (Sydney-10%: 44±2, 15%: 49±2 and 25%: 49±2 Kingston-10%: 41±3, 15%: 41±3 and 25%: 37±3).

Download full-text


Available from: Claudia Martinez-Cordero, Apr 28, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A significant contributor to the rising rates of human obesity is an increase in energy intake. The 'protein leverage hypothesis' proposes that a dominant appetite for protein in conjunction with a decline in the ratio of protein to fat and carbohydrate in the diet drives excess energy intake and could therefore promote the development of obesity. Our aim was to test the 'protein leverage hypothesis' in lean humans by disguising the macronutrient composition of foods offered to subjects under ad libitum feeding conditions. Energy intakes and hunger ratings were measured for 22 lean subjects studied over three 4-day periods of in-house dietary manipulation. Subjects were restricted to fixed menus in random order comprising 28 foods designed to be similar in palatability, availability, variety and sensory quality and providing 10%, 15% or 25% energy as protein. Nutrient and energy intake was calculated as the product of the amount of each food eaten and its composition. Lowering the percent protein of the diet from 15% to 10% resulted in higher (+12±4.5%, p = 0.02) total energy intake, predominantly from savoury-flavoured foods available between meals. This increased energy intake was not sufficient to maintain protein intake constant, indicating that protein leverage is incomplete. Urinary urea on the 10% and 15% protein diets did not differ statistically, nor did they differ from habitual values prior to the study. In contrast, increasing protein from 15% to 25% did not alter energy intake. On the fourth day of the trial, however, there was a greater increase in the hunger score between 1-2 h after the 10% protein breakfast versus the 25% protein breakfast (1.6±0.4 vs 25%: 0.5±0.3, p = 0.005). In our study population a change in the nutritional environment that dilutes dietary protein with carbohydrate and fat promotes overconsumption, enhancing the risk for potential weight gain.
    Full-text · Article · Oct 2011 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased energy intakes are contributing to overweight and obesity. Growing evidence supports the role of protein appetite in driving excess intake when dietary protein is diluted (the protein leverage hypothesis). Understanding the interactions between dietary macronutrient balance and nutrient-specific appetite systems will be required for designing dietary interventions that work with, rather than against, basic regulatory physiology. Data were collected from 38 published experimental trials measuring ad libitum intake in subjects confined to menus differing in macronutrient composition. Collectively, these trials encompassed considerable variation in percent protein (spanning 8-54% of total energy), carbohydrate (1.6-72%) and fat (11-66%). The data provide an opportunity to describe the individual and interactive effects of dietary protein, carbohydrate and fat on the control of total energy intake. Percent dietary protein was negatively associated with total energy intake (F = 6.9, P < 0.0001) irrespective of whether carbohydrate (F = 0, P = 0.7) or fat (F = 0, P = 0.5) were the diluents of protein. The analysis strongly supports a role for protein leverage in lean, overweight and obese humans. A better appreciation of the targets and regulatory priorities for protein, carbohydrate and fat intake will inform the design of effective and health-promoting weight loss diets, food labelling policies, food production systems and regulatory frameworks.
    No preview · Article · Mar 2014 · Obesity Reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and objectives: Birthweight differences between kwashiorkor and marasmus suggest that intrauterine factors influence the development of these syndromes of malnutrition and may modulate risk of obesity through dietary intake. We tested the hypotheses that the target protein intake in adulthood is associated with birthweight, and that protein leveraging to maintain this target protein intake would influence energy intake (EI) and body weight in adult survivors of malnutrition. Methodology: Sixty-three adult survivors of marasmus and kwashiorkor could freely compose a diet from foods containing 10, 15 and 25 percentage energy from protein (PEP; phase 1) for 3 days. Participants were then randomized in phase 2 (5 days) to diets with PEP fixed at 10%, 15% or 25%. Results: Self-selected PEP was similar in both groups. In the groups combined, selected PEP was 14.7, which differed significantly (P<0.0001) from the null expectation (16.7%) of no selection. Self-selected PEP was inversely related to birthweight, the effect disappearing after adjusting for sex and current body weight. In phase 2, PEP correlated inversely with EI (P = 0.002) and weight change from phase 1 to 2 (P = 0.002). Protein intake increased with increasing PEP, but to a lesser extent than energy increased with decreasing PEP. Conclusions and implications: Macronutrient intakes were not independently related to birth weight or diagnosis. In a free-choice situation (phase 1), subjects selected a dietary PEP significantly lower than random. Lower PEP diets induce increased energy and decreased protein intake, and are associated with weight gain.
    Full-text · Article · Jan 2016