Regulation of lipopolysaccharide-induced inflammatory response and endotoxemia by β-arrestins

Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan 48824, USA.
Journal of Cellular Physiology (Impact Factor: 3.84). 11/2010; 225(2):406-16. DOI: 10.1002/jcp.22289
Source: PubMed


Beta-arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that beta-arrestin-1 (beta-arr-1) and -2 knockout (KO) mice are protected from TLR4-mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild-type (WT) and beta-arr-1 and -2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS-induced inflammatory cytokine levels in the plasma were markedly decreased in both beta-arr-1 and -2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11(b+) and CD11(b-) populations) from WT, beta-arr-1, and -2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS-induced inflammatory cytokines were significantly blocked in both splenocyte populations from the beta-arr-2 KO compared to the WT mice. This effect in the beta-arr-1 KO mice, however, was restricted to the CD11(b-) splenocytes. Our studies further indicate that regulation of cytokine production by beta-arrestins is likely independent of MAPK and IkappaBalpha-NFkappaB pathways. Our results, however, suggest that LPS-induced chromatin modification is dependent on beta-arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by beta-arrestins in vivo. Taken together, these results indicate that beta-arr-1 and -2 mediate LPS-induced cytokine secretion in a cell-type specific manner and that both beta-arrestins have overlapping but non-redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice.

Download full-text


Available from: Narayanan Parameswaran
  • Source
    • "TNFa levels in the culture supernatants were analyzed using ELISA kit from eBiosciences following manufacturer 0 s recommendations and as described previously [Porter et al., 2010]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lithium (Li) is one of the currently prescribed drugs for bipolar disorders and has many neuro-regulatory and immune-modulating properties. Because many neuro-pathological diseases including bipolar disorders have been associated with some level of inflammation, Li's effect on inflammation may have some crucial consequences. Even though Li has been shown to have pro- and anti-inflammatory activities in different cell models, mechanisms involved in these effects are not well understood. Moreover, Li's effect on inflammation in the presence of activators of Toll-like receptors (TLRs), especially TLR-2 (that activates MyD88-dependent pathway) and TLR-3 (that activates TRIF-dependent pathway) is not known. Here we tested the role of Li in the presence and absence of TLR2, and TLR3 on MAPK and NFκB pathways and the consequent production of tumor necrosis factor-α (TNFα) in Raw264.7 macrophages. Our results indicate that Li enhances TNFα production both in the absence and presence of TLR stimulation. Interestingly, Li differentially modulates MAPK and NFκB pathways in the absence and presence of TLR2/3 ligands. Our results further indicate that the effect of Li on TNFα occurs at the post-transcriptional level. Together, these studies demonstrate that Li induces TNFα production in macrophages and that it modulates signaling at different levels depending on the presence or absence of TLR2/3 stimulation. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Preview · Article · Jan 2014 · Journal of Cellular Biochemistry
  • Source
    • "β-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways (8). Studies have also shown that, depending on the cellular context and receptor examined, β-arrestin-1 either mediates or inhibits receptor signaling (9). Furthermore, recent studies have also shown that β-arrestins function to negatively regulate the inflammatory response induced by lipopolysaccharide (LPS) (10). "
    [Show abstract] [Hide abstract]
    ABSTRACT: β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.
    Full-text · Article · Dec 2013 · Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.]
  • Source
    • "In addition, in vitro loss and gain of function studies in HEK/TLR4 cells demonstrate that β-arrestin 2 dampens LPS-induced NF-κB activation [40]. In contrast, another in vivo study showed that β-arrestin 2−/− mice intraperitoneally challenged with LPS were protected from TLR4-mediated endotoxic shock and lethality in a gender-dependent manner via mechanisms entailing chromatin modifications [52]. However, using sex-mixed arrestin 2−/− mice in our study, we could not observe gender-dependent protective effects on LPS susceptibility of the lung. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The soluble C-type lectin surfactant protein (SP)-A mediates lung immune responses partially via its direct effects on alveolar macrophages (AM), the main resident leukocytes exposed to antigens. SP-A modulates the AM threshold of lipopolysaccharide (LPS) activity towards an anti-inflammatory phenotype both in vitro and in vivo through various mechanisms. LPS responses are tightly regulated via distinct pathways including subcellular TLR4 localization and thus ligand sensing. The cytosolic scaffold and signaling protein β-arrestin 2 acts as negative regulator of LPS-induced TLR4 activation. Here we show that SP-A neither increases TLR4 abundancy nor co-localizes with TLR4 in primary AM. SP-A significantly reduces the LPS-induced co-localization of TLR4 with the early endosome antigen (EEA) 1 by promoting the co-localization of TLR4 with the post-Golgi compartment marker Vti1b in freshly isolated AM from rats and wild-type (WT) mice, but not in β-arrestin 2(-/-) AM. Compared to WT mice pulmonary LPS-induced TNF-α release in β-arrestin 2(-/-) mice is accelerated and enhanced and exogenous SP-A fails to inhibit both lung LPS-induced TNF-α release and TLR4/EEA1 positioning. SP-A, but not LPS, enhances β-arrestin 2 protein expression in a time-dependent manner in primary rat AM. The constitutive expression of β-arrestin 2 in AM from SP-A(-/-) mice is significantly reduced compared to SP-A(+/+) mice and is rescued by SP-A. Prolonged endosome retention of LPS-induced TLR4 in AM from SP-A(-/-) mice is restored by exogenous SP-A, and is antagonized by β-arrestin 2 blocking peptides. LPS induces β-arrestin 2/TLR4 association in primary AM which is further enhanced by SP-A. The data demonstrate that SP-A modulates LPS-induced TLR4 trafficking and signaling in vitro and in vivo engaging β-arrestin 2.
    Full-text · Article · Mar 2013 · PLoS ONE
Show more