Changes in blood pressure induced by electrical stimulation of the femur in anesthetized rats

ArticleinAutonomic neuroscience: basic & clinical 158(1-2):39-43 · December 2010with2 Reads
Impact Factor: 1.56 · DOI: 10.1016/j.autneu.2010.05.012 · Source: PubMed

    Abstract

    The effects of electrical stimulation of the femur, on blood pressure, were examined in anesthetized rats. Two small holes, 3-4 mm apart, were manually drilled into the femur down to the bone marrow. Following this, two stainless-steel electrodes were inserted into the holes, and an electrical square wave current was passed between the electrodes. In central nervous system-intact rats, electrical stimulation of the femur at 5 and 10 mA at 20 Hz for 20 s produced an intensity-dependent decrease in mean arterial blood pressure. This response was abolished by severance of the femoral and sciatic nerves ipsilateral to the stimulation. Furthermore, the renal sympathetic efferent nerve activities (as a representative index of vasoconstrictor activities) decreased following the electrical stimulation of the femur. However, in acutely-spinalized rats (spinalized at the cervical level) the same stimulation increased renal sympathetic efferent nerve activities and mean arterial blood pressure. It was concluded that high-intensity electrical stimulation of the femur reflexively affected blood pressure. It can be inferred that the osteal high-threshold receptors and/or fibers are involved in the afferent nerve pathway, and the efferent nerve pathway is the sympathetic vasoconstrictor nerve. The excitatory response properties at the propriospinal level are modified into an inhibitory response by supraspinal structures.