Structure of the Gating Ring from the Human High-conductance Ca-gated K Channel

Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA.
Nature (Impact Factor: 41.46). 07/2010; 466(7304):393-7. DOI: 10.1038/nature09252
Source: PubMed


Large-conductance Ca(2+)-gated K(+) (BK) channels are essential for many biological processes such as smooth muscle contraction and neurotransmitter release. This group of channels can be activated synergistically by both voltage and intracellular Ca(2+), with the large carboxy-terminal intracellular portion being responsible for Ca(2+) sensing. Here we present the crystal structure of the entire cytoplasmic region of the human BK channel in a Ca(2+)-free state. The structure reveals four intracellular subunits, each comprising two tandem RCK domains, assembled into a gating ring similar to that seen in the MthK channel and probably representing its physiological assembly. Three Ca(2+) binding sites including the Ca(2+) bowl are mapped onto the structure based on mutagenesis data. The Ca(2+) bowl, located within the second RCK domain, forms an EF-hand-like motif and is strategically positioned close to the assembly interface between two subunits. The other two Ca(2+) (or Mg(2+)) binding sites, Asp 367 and Glu 374/Glu 399, are located on the first RCK domain. The Asp 367 site has high Ca(2+) sensitivity and is positioned in the groove between the amino- and carboxy-terminal subdomains of RCK1, whereas the low-affinity Mg(2+)-binding Glu 374/Glu 399 site is positioned on the upper plateau of the gating ring and close to the membrane. Our structure also contains the linker connecting the transmembrane and intracellular domains, allowing us to dock a voltage-gated K(+) channel pore of known structure onto the gating ring with reasonable accuracy and generate a structural model for the full BK channel.

Download full-text


Available from: Yunkun Wu, Jan 13, 2014
  • Source
    • "The Ca 2+ bowl is located in the RCK2 domain and forms a typical metal binding motif called EF-hand-like motif. The residues involved in Ca +2 binding are Asp 367, Glu 374 and Glu 399 in human BK [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis. Copyright © 2015. Published by Elsevier Ltd.
    Full-text · Article · Aug 2015 · Pharmacological Research
  • Source
    • "It is a Type 3 tyrosine kinase inhibitor with respect to the ATP binding site. 2009; Olsen and Sieghart, 2009; Wu et al., 2010b; Payandeh et al., 2011, 2012; Corringer et al., 2012; Tan et al., 2013). However, classic pharmacological principles remain very powerful in that they are designed to evaluate the effects of drugs by cancelling out systemdependent variables using null methods. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.
    Full-text · Article · Oct 2014 · Pharmacological reviews
  • Source
    • "(A) Crystal structure of the intracellular C-terminal domain of human BK in a form showing the gating ring constituted as a modified tetramer (PDB ID: 3NAF) [68]. (B) A crystal structure of the non-modified monomer of this domain (PDB ID: 3MT5) [63]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal and smooth muscles, exocrine cells, and sensory cells of the inner ear. Previous studies suggest that BK channels are promiscuous binders involved in a multitude of protein-protein interactions. To gain a better understanding of the potential mechanisms underlying BK interactions, we analyzed the abundance, distribution, and potential mechanisms of intrinsic disorder in 27 BK channel variants from mouse cochlea, 104 previously reported BK-associated proteins (BKAPS) from cytoplasmic and membrane/cytoskeletal regions, plus BK β- and γ-subunits. Disorder was evaluated using the MFDp algorithm, which is a consensus-based predictor that provides a strong and competitive predictive quality and PONDR, which can determine long intrinsically disordered regions (IDRs). Disorder-based binding sites or molecular recognition features (MoRFs) were found using MoRFpred and ANCHOR. BKAP functions were categorized based on Gene Ontology (GO) terms. The analyses revealed that the BK variants contain a number of IDRs. Intrinsic disorder is also common in BKAPs, of which ∼5% are completely disordered. However, intrinsic disorder is very differently distributed within BK and its partners. Approximately 65% of the disordered segments in BK channels are long (IDRs) (>50 residues), whereas >60% of the disordered segments in BKAPs are short IDRs that range in length from 4 to 30 residues. Both α and γ subunits showed various amounts of disorder as did hub proteins of the BK interactome. Our analyses suggest that intrinsic disorder is important for the function of BK and its BKAPs. Long IDRs in BK are engaged in protein-protein and protein-ligand interactions, contain multiple post-translational modification sites, and are subjected to alternative splicing. The disordered structure of BK and its BKAPs suggests one of the underlying mechanisms of their interaction.
    Full-text · Article · Apr 2014 · PLoS ONE
Show more