Dietary supplementation of creatine monohydrate reduces the human fMRI BOLD signal

Department of Psychology, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK.
Neuroscience Letters (Impact Factor: 2.03). 08/2010; 479(3):201-5. DOI: 10.1016/j.neulet.2010.05.054
Source: PubMed


Creatine monohydrate is an organic acid that plays a key role in ATP re-synthesis. Creatine levels in the human brain vary considerably and dietary supplementation has been found to enhance cognitive performance in healthy individuals. To explore the possibility that the fMRI Blood Oxygen Level Dependent (BOLD) response is influenced by creatine levels, BOLD responses to visual stimuli were measured in visual cortex before and after a week of creatine administration in healthy human volunteers. The magnitude of the BOLD response decreased by 16% following creatine supplementation of a similar dose to that previously shown to increase cerebral levels of phosphocreatine. We also confirmed that cognitive performance (memory span) is increased. These changes were not found in a placebo group. Possible mechanisms of BOLD change are considered. The results offer potential for insight into the coupling between neural activity and the BOLD response and the more immediate possibility of accounting for an important source of variability during fMRI analysis in clinical studies and other investigations where between-subjects variance is an issue.

Download full-text


Available from: Matthew B Wall
  • Source
    • "Neurological and cognitive function has also been shown to be improved by creatine supplementation [47,48]. Rawson and Venezia [49] review the effects of creatine supplementation on cognitive function highlighting that higher brain creatine has been associated with improved neuropsychological performance. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly).
    Full-text · Article · Jul 2012 · Journal of the International Society of Sports Nutrition
  • Source
    • "Chronic creatine supplementation has been shown to address certain aspects of sleep deprivation linked and other pathophysiology linked cognitive deficits [8,9,11,13,14,19], although very low dose chronic supplementation does not appear to improve function in non-sleep deprived healthy subjects [28]. Sleep deprivation is associated with a reduction in brain stores of phosphocreatine [10] and certainly in some disease states depletion of high energy phosphate stores has been measured, associated with cognitive deficit, and alleviated to some extent by creatine supplementation [13,14,29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of sleep deprivation with or without acute supplementation of caffeine or creatine on the execution of a repeated rugby passing skill. Ten elite rugby players completed 10 trials on a simple rugby passing skill test (20 repeats per trial), following a period of familiarisation. The players had between 7-9 h sleep on 5 of these trials and between 3-5 h sleep (deprivation) on the other 5. At a time of 1.5 h before each trial, they undertook administration of either: placebo tablets, 50 or 100 mg/kg creatine, 1 or 5 mg/kg caffeine. Saliva was collected before each trial and assayed for salivary free cortisol and testosterone. Sleep deprivation with placebo application resulted in a significant fall in skill performance accuracy on both the dominant and non-dominant passing sides (p < 0.001). No fall in skill performance was seen with caffeine doses of 1 or 5 mg/kg, and the two doses were not significantly different in effect. Similarly, no deficit was seen with creatine administration at 50 or 100 mg/kg and the performance effects were not significantly different. Salivary testosterone was not affected by sleep deprivation, but trended higher with the 100 mg/kg creatine dose, compared to the placebo treatment (p = 0.067). Salivary cortisol was elevated (p = 0.001) with the 5 mg/kg dose of caffeine (vs. placebo). Acute sleep deprivation affects performance of a simple repeat skill in elite athletes and this was ameliorated by a single dose of either caffeine or creatine. Acute creatine use may help to alleviate decrements in skill performance in situations of sleep deprivation, such as transmeridian travel, and caffeine at low doses appears as efficacious as higher doses, at alleviating sleep deprivation deficits in athletes with a history of low caffeine use. Both options are without the side effects of higher dose caffeine use.
    Full-text · Article · Feb 2011 · Journal of the International Society of Sports Nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington's Disease and Parkinson's Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies.
    Preview · Article · Mar 2012 · Neuroscience & Biobehavioral Reviews
Show more