T Cell Epitope Specificity and Pathogenesis of Mouse Hepatitis Virus-1–Induced Disease in Susceptible and Resistant Hosts

Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
The Journal of Immunology (Impact Factor: 4.92). 07/2010; 185(2):1132-41. DOI: 10.4049/jimmunol.0902749
Source: PubMed


Intranasal mouse hepatitis virus-1 (MHV-1) infection of susceptible mouse strains mimics some important pathologic features observed in the lungs of severe acute respiratory syndrome (SARS)-coronavirus-infected humans. The pathogenesis of SARS remains poorly understood, although increasing evidence suggests that immunopathology could play an important role. We previously reported that the adaptive immune response plays an important protective role in MHV-1-infected resistant B6 mice and that both CD4 and CD8 T cells play a significant role in the development of morbidity and lung pathology following intranasal MHV-1 infection of susceptible C3H/HeJ and A/J mice. In this study, we have identified novel CD4 and CD8 epitopes in MHV-1-infected susceptible and resistant strains of mice. Susceptible C3H/HeJ mice mount robust and broad MHV-1-specific CD4 T cell responses, whereas in resistant B6 mice, Ag-specific CD8 T cell responses dominate. We also show that previously immunized susceptible C3H/HeJ mice do not develop any morbidity and are completely protected following a lethal-dose MHV-1 challenge despite mounting only a modest secondary T cell response. Finally, we demonstrate that the resistance displayed by B6 mice is not solely accounted for by the elaboration of a broad and vigorous MHV-1-specific CD8 T cell response, as MHV-1 infection of C3.SW-H2(b)/SnJ mice, which mount an equally robust CD8 T cell response of the same specificity, is still associated with significant morbidity. Thus, identification of novel CD4 and CD8 T cell epitopes for MHV-1 permitted high-resolution analyses of pulmonary T cell responses in a mouse model of SARS.

  • Source
    • "We have previously identified six MHV-1-derived CD4 T cell epitopes in C3H mice [21]. Because the frequency of the responding CD4 T cells to any one of these epitopes is relatively low, we used a pool of all six epitopes to stimulate the CD4 T cells ex vivo. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronaviruses cause respiratory disease in humans that can range from mild to severe. However, the pathogenesis of pulmonary coronavirus infections is poorly understood. Mouse hepatitis virus type 1 (MHV-1) is a group 2 coronavirus capable of causing severe morbidity and mortality in highly susceptible C3H/HeJ mice. We have previously shown that both CD4 and CD8 T cells play a critical role in mediating MHV-1-induced disease. Here we evaluated the role of alveolar macrophages (AM) in modulating the adaptive immune response and subsequent disease. Depletion of AM using clodronate liposomes administered prior to MHV-1 infection was associated with a significant amelioration of MHV-1-induced morbidity and mortality. AM depletion resulted in a decreased number of virus-specific CD4 T cells in the lung airways. In addition, a significant increase in the frequency and total number of Tregs in the lung tissue and lung airways was observed following MHV-1 infection in mice depleted of AM. Our results indicate that AM play a critical role in modulating MHV-1-induced morbidity and mortality.
    Full-text · Article · Mar 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging respiratory coronaviruses such as the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) pose potential biological threats to humans. SARS and MERS are manifested as severe atypical pneumonia associated with high morbidity and mortality in humans. The majority of studies carried out in SARS-CoV-infected humans and animals attribute a dysregulated/exuberant innate response as a leading contributor to SARS-CoV-mediated pathology. A decade after the 2002-2003 SARS epidemic, we do not have any approved preventive or therapeutic agents available in case of re-emergence of SARS-CoV or other related viruses. A strong neutralizing antibody response generated against the spike (S) glycoprotein of SARS-CoV is completely protective in the susceptible host. However, neutralizing antibody titers and the memory B cell response are short lived in SARS-recovered patients and the antibody will target primary homologous strain. Interestingly, the acute phase of SARS in humans is associated with a severe reduction in the number of T cells in the blood. Surprisingly, only a limited number of studies have explored the role of the T cell-mediated adaptive immune response in respiratory coronavirus pathogenesis. In this review, we discuss the role of anti-virus CD4 and CD8 T cells during respiratory coronavirus infections with a special emphasis on emerging coronaviruses.
    No preview · Article · May 2014 · Immunologic Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronaviruses have been studied for over 60 years, but have only recently gained notoriety as deadly human pathogens with the emergence of severe respiratory syndrome coronavirus and Middle East respiratory syndrome virus. The rapid emergence of these viruses has demonstrated the need for good models to study severe coronavirus respiratory infection and pathogenesis. There are, currently, different methods and models for the study of coronavirus disease. The available genetic methods for the study and evaluation of coronavirus genetics are reviewed here. There are several animal models, both mouse and alternative animals, for the study of severe coronavirus respiratory disease that have been examined, each with different pros and cons relative to the actual pathogenesis of the disease in humans. A current limitation of these models is that no animal model perfectly recapitulates the disease seen in humans. Through the review and analysis of the available disease models investigators can employ the most appropriate available model to study coronavirus various aspects of pathogenesis and evaluate potential antiviral treatments that may potentially be successful in future treatment and prevention of severe coronavirus respiratory infections.
    Preview · Article · Sep 2014 · Journal of General Virology