HIV-1 Vif versus the APOBEC3 cytidine deaminases: An intracellular duel between pathogen and host restriction factors

Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA.
Molecular Aspects of Medicine (Impact Factor: 10.24). 10/2010; 31(5):383-97. DOI: 10.1016/j.mam.2010.06.001
Source: PubMed


The Vif protein of HIV is essential for the effective propagation of this pathogenic retrovirus in vivo. Vif acts by preventing virion encapsidation of two potent antiviral factors, the APOBEC3G and APOBEC3F cytidine deaminases. Decreased encapsidation in part involves Vif-mediated recruitment of a ubiquitin E3 ligase complex that promotes polyubiquitylation and proteasome-mediated degradation of APOBEC3G/F. The resultant decline in intracellular levels of these enzymes leads to decreased encapsidation of APOBECG/F into budding virions. This review discusses recent advances in our understanding of the dynamic interplay of Vif with the antiviral APOBEC3 enzymes.

Full-text preview

Available from:
  • Source
    • "These figure information have been adapted from Wissing et al., [87] to the Vif sequence modeled. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The virion infectivity factor (Vif) is an accessory protein, which is essential for HIV replication in host cells. Vif neutralizes the antiviral host protein APOBEC3 through recruitment of the E3 ubiquitin ligase complex. Fifty thousand Vif models were generated using the ab initio relax protocol of the Rosetta algorithm from sets of three- and nine-residue fragments using the fragment Monte Carlo insertion-simulated annealing strategy, which favors protein-like features, followed by an all-atom refinement. In the protocol, a constraints archive was used to define the spatial relationship between the side chains from Cys/His residues and zinc ions that formed the zinc-finger motif that is essential for Vif function. We also performed centroids analysis and structural analysis with respect to the formation of the zinc-finger, and the residue disposal in the protein binding domains. Additionally, molecular docking was used to explore details of Vif-A3G and Vif-EloBC interactions. Furthermore, molecular dynamics simulation was used to evaluate the stability of the complexes Vif-EloBC-A3G and Vif-EloC. The zinc in the HCCH domain significantly alters the folding of Vif and changes the structural dynamics of the HCCH region. Ab initio modeling indicated that the Vif zinc-finger possibly displays tetrahedral geometry as suggested by Mehle et al. (2006). Our model also showed that the residues L146 and L149 of the BC-box motif bind to EloC by hydrophobic interactions, and the residue P162 of the PPLP motif is important to EloB binding. The model presented here is the first complete three-dimensional structure of the Vif. The interaction of Vif with the A3G protein and the EloBC complex is in agreement with empirical data that is currently available in the literature and could therefore provide valuable structural information for advances in rational drug design.
    Full-text · Article · Feb 2014 · PLoS ONE
  • Source
    • "HIV-specific restrictions, in addition to blocking virus on its way into cells can also sabotage virus during production. Members of the APOBEC protein family can diminish the infectivity of viruses produced in their presence [5]. APOBEC3G, a cytidine deaminase, targets residues in nascent negative strands during reverse transcription, resulting in the accumulation of G to A transitions in viral coding sequences. "
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV and SIV defeat antiviral proteins by usurping Cullin-RING E3 ubiquitin ligases (CRLs) and likely influence other cellular processes through these as well. HIV-2 viral protein X (Vpx) engages the cullin4-containing CRL4 complex to deplete the antiviral protein SAMHD1. Vif expressed by HIV-1 and HIV-2 taps a cullin5 ubiquitin ligase complex to mark the antiviral protein APOBEC3G for destruction. Viral Protein R of HIV-1 (Vpr) assembles with the CRL4 ubiquitin ligase complex to deplete uracil-N-glycosylase2 (UNG2). Covalent attachment of the ubiquitin-like protein side-chain NEDD8 functionally activates cullins which are common to all of these processes. The requirement for neddylation in HIV-1 and HIV-2 infectivity was tested in the presence of APOBEC3G and SAMHD1 respectively. Further the need for neddylation in HIV-1 Vpr-mediated depletion of UNG2 was probed. Treatment with MLN4924, an adenosine sulfamate analog which hinders the NEDD8 activating enzyme NAE1, blocked neddylation of cullin4A (CUL4A). The inhibitor hindered HIV-1 infection in the presence of APOBEC3G, even when Vif was expressed, and it stopped HIV-2 infection in the presence of SAMHD1 and Vpx. Consistent with these findings, MLN4924 prevented Vpx-mediated depletion of SAMHD1 in macrophages infected with Vpx-expressing HIV-2, as well as HIV-1 Vif-mediated destruction of APOBEC3G. It also stemmed Vpr-mediated UNG2 elimination from cells infected with HIV-1. Neddylation plays an important role in HIV-1 and HIV-2 infection. This observation is consistent with the essential parts that cullin-based ubiquitin ligases play in overcoming cellular anti-viral defenses.
    Full-text · Article · Nov 2013 · Retrovirology
  • Source
    • "The 26S proteasome is composed of two regulatory 19S subunits that abut a catalytic 20S core subunit and as a whole is responsible for the degradation of ubiquitinated proteins in the cell [29]. Interestingly, the proteasome is involved in promoting HIV-1 replication via its specific degradation of the APOBEC3 family of HIV-1 restriction factors in the presence of the viral protein Vif (Reviewed in [30,31]). Surprisingly, as delineated in this study, it was also found that the proteasome is involved in maintaining HIV-1 latency. The fact that the proteasome positively influences both HIV-1 replication and latency makes it a unique drug target whose inhibition has the potential to elicit dual antiviral effects. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Existing highly active antiretroviral therapy (HAART) effectively controls viral replication in human immunodeficiency virus type 1 (HIV-1) infected individuals but cannot completely eradicate the infection, at least in part due to the persistence of latently infected cells. One strategy that is being actively pursued to eliminate the latent aspect of HIV-1 infection involves therapies combining latency antagonists with HAART. However, discordant pharmacokinetics between these types of drugs can potentially create sites of active viral replication within certain tissues that might be impervious to HAART. A preliminary reverse genetic screen indicated that the proteasome might be involved in the maintenance of the latent state. This prompted testing to determine the effects of proteasome inhibitors (PIs) on latently infected cells. Experiments demonstrated that PIs effectively activated latent HIV-1 in several model systems, including primary T cell models, thereby defining PIs as a new class of HIV-1 latency antagonists. Expanding upon experiments from previous reports, it was also confirmed that PIs inhibit viral replication. Moreover, it was possible to show that PIs act as bifunctional antagonists of HIV-1. The data indicate that PIs activate latent provirus and subsequently decrease viral titers and promote the production of defective virions from activated cells. These results represent a proof-of-concept that bifunctional antagonists of HIV-1 can be developed and have the capacity to ensure precise tissue overlap of anti-latency and anti-replication functions, which is of significant importance in the consideration of future drug therapies aimed at viral clearance.
    Full-text · Article · Oct 2013 · Retrovirology
Show more