Plasticity of Invariant NKT Cell Regulation of Allergic Airway Disease Is Dependent on IFN-γ Production

Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
The Journal of Immunology (Impact Factor: 4.92). 07/2010; 185(1):253-62. DOI: 10.4049/jimmunol.0902301
Source: PubMed


Invariant NKT cells (iNKT cells) play a pivotal role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation. However, it is unclear what role they play in the initiation (sensitization) phase as opposed to the effector (challenge) phase. The role of iNKT cells during sensitization was examined by determining the response of mice to intratracheal transfer of OVA-pulsed or OVA-alpha-galactosylceramide (OVA/alphaGalCer)-pulsed bone marrow-derived dendritic cells (BMDCs) prior to allergen challenge. Wild-type (WT) recipients of OVA-BMDCs developed AHR, increased airway eosinophilia, and increased levels of Th2 cytokines in bronchoalveolar lavage fluid, whereas recipients of OVA/alphaGalCer BMDCs failed to do so. In contrast, transfer of these same OVA/alphaGalCer BMDCs into IFN-gamma-deficient (IFN-gamma(-/-)) mice enhanced the development of these lung allergic responses, which was reversed by exogenous IFN-gamma treatment following OVA-BMDC transfer. Further, Jalpha18-deficient recipients, which lack iNKT cells, developed the full spectrum of lung allergic responses following reconstitution with highly purified WT liver or spleen iNKT cells and transfer of OVA-BMDCs, whereas reconstituted recipients of OVA/alphaGalCer BMDCs failed to do so. Transfer of iNKT cells from IFN-gamma(-/-) mice restored the development of these responses in Jalpha18-deficient recipients following OVA-BMDC transfer; the responses were enhanced following OVA/alphaGalCer BMDC transfer. iNKT cells from these IFN-gamma(-/-) mice produced higher levels of IL-13 in vitro compared with WT iNKT cells. These data identify IFN-gamma as playing a critical role in dictating the consequences of iNKT cell activation in the initiation phase of the development of AHR and airway inflammation.

Download full-text


Available from: Yoshiki Shiraishi
  • [Show abstract] [Hide abstract]
    ABSTRACT: T helper 2 (Th2) cells play crucial roles in the development of allergic asthma, while various distinct cell populations also contribute to the pathogenesis of the disease. Invariant natural killer T (iNKT) cells produce large amounts of cytokines such as IL-4 and IFNγ upon stimulation with a ligand, α-galactosylceramide, and regulate various immune responses. Recently, a critical role of iNKT cells in the mouse model of asthma and also in asthma patients has been reported, while some contradictory results have also been described. Here, we summarize the experimental results in mouse and human systems, and discuss the current understanding of the role of NKT cells in the pathogenesis of asthma, including a possible mechanism by which iNKT cells are activated in asthma patients.
    No preview · Article · Dec 2010 · Current opinion in immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Invariant NK T (iNKT) cells are a subset of T lymphocytes that recognize glycolipid antigens bound with the antigen-presenting molecule CD1d. iNKT cells have potent immunoregulatory activities that can promote or suppress immune responses during different pathological conditions. These immunoregulatory properties can be harnessed for therapeutic purposes with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid α-galactosylceramide. Preclinical studies have shown substantial promise for iNKT cell-based treatments of infections, cancer and autoimmune and inflammatory diseases. Translation of these preclinical studies to the clinic, while faced with some obstacles, has already had some initial success. In this article, we review the immunodulatory activities of iNKT cells and the potential for developing iNKT cell-based prophylactic and curative therapies of human disease.
    No preview · Article · Jan 2011 · Immunotherapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.
    Full-text · Article · Oct 2011 · Immunotherapy
Show more