Article

Grape seed extract enhances eNOS expression and NO production through regulating calcium-mediated AKT phosphorylation in H2O2-treated endothelium

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

GSE (grape seed extract) has been shown to exhibit protective effects against cardiovascular events and atherosclerosis, although the underlying molecular mechanisms of action are unknown. Herein, we assessed the ability of GSE to enhance eNOS (endothelial nitric oxide synthase) expression and NO (nitric oxide) production in H2O2 (hydrogen peroxide)-treated HUVECs (human umbilical vein endothelial cells). GSE enhanced eNOS expression and NO release in H2O2-treated cells in a dose-dependent manner. GSE inhibited intracellular ROS (reactive oxygen species) and reduced intracellular calcium in a dose-dependent manner in H2O2-treated cells, as shown by confocal microscopy. ROS was inhibited in cells pretreated with 5.0 microM GSE, 2.0 microM TG (thapsigargin) and 20.0 microM 2-APB (2-aminoethoxydiphenyl borate) instead of 0.25 microM extracellular calcium. In addition, GSE enhanced eNOS expression and reduced ROS production via increasing p-AKT (AKT phosphorylation) with high extracellular calcium (13 mM). In conclusion, GSE protected against endothelial injury by up-regulation of eNOS and NO expression via inhibiting InsP3Rs (inositol 1,4,5-trisphosphate receptors)-mediated intracellular excessive calcium release and by activating p-AKT in endothelial cells.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Grape skin or seeds are very rich source of polyphenols, especially flavanols with proanthocyanidins [6], and other compounds with antioxidant and anti-inflammatory activities resembling those of resveratrol [7,8]. Many studies confirm the cardioprotective effects of grape seeds, demonstrating reduction of blood pressure, lower levels of oxidized low-density lipoprotein (ox-LDL), and enhanced nitric oxide (NO) production [9][10][11][12]. Recent studies have provided evidence that red grape components are a source of antioxidant compounds that ameliorate the viability and function of endothelial progenitor cells (EPC) [13]. ...
... The last few years have seen increasing interest in screening substances, especially plant natural products, that can stimulate vascular endothelial cells to produce antiplatelet modulators (prostacyclin (PGI) and nitric oxide (NO )) [10][11][12]25]. Most published studies suggest that vascular protection by GSE might be due to the direct action of polyphenols on endothelial cells, resulting in enhanced NO synthase (eNOS) expression [10,12]. ...
... The last few years have seen increasing interest in screening substances, especially plant natural products, that can stimulate vascular endothelial cells to produce antiplatelet modulators (prostacyclin (PGI) and nitric oxide (NO )) [10][11][12]25]. Most published studies suggest that vascular protection by GSE might be due to the direct action of polyphenols on endothelial cells, resulting in enhanced NO synthase (eNOS) expression [10,12]. The present study is the first one testing the indirect effects of GSE on platelet inhibition dependent on endothelial cells. ...
Article
Purpose Numerous studies have suggested that grape seed extract (GSE) confers vascular protection due to the direct effect of its polyphenol content on endothelial cells. The aim of the study was to determine whether GSE confers vascular protection through the direct effect of its polyphenol content on endothelial cells. Material/methods After incubation with GSE-treated human umbilical vein endothelial cells (HUVECs), blood platelet reactivity was evaluated with regard to the expression of CD62P and the activated form of GPIIbIIIa in ADP-stimulated platelets. Results Lower concentrations of GSE were found to enhance the antiplatelet action of HUVECs: 1 μg/ml GSE reduced platelet reactivity by about 10%. While platelet reactivity was not altered by HUVECs incubated with higher concentrations of GSE, HUVEC proliferation was significantly reduced by GSE of up to 10 μg gallic acid equivalent/ml. Conclusions The results of the study show that low doses of GSE potentiate the inhibitory action of HUVECs on platelet reactivity, which may account, at least partially, for the protective effects of grape products against cardiovascular diseases. In contrast, high concentrations of GSE significantly impair endothelial cell proliferation in vitro.
... When vascular endothelial cells are damaged by oxidative stress, NO production, which is involved in the regulation of vasorelaxation and vasoconstriction, is reduced or loses its bioactivity, which, in turn, facilitates vascular endothelium dysfunction [17]. However, vascular endothelium dysfunction may contribute to elevated blood pressure and persistent hypertension, which is particularly pronounced in systolic hypertension and in elderly patients [18]. ...
... In a study performed on SHR rats (a model of hypertension), blood SOD activity was significantly increased following acacia bark extract consumption that contained proanthocyanidins [7]. It is known that oxidative stress causes vascular endothelium dysfunction due to the decreased production or loss of bioactivity of NO [17]. Because reactive oxygen species (ROS) are involved in the development and maintenance of hypertension in SHR rats, it is believed that the decrease in the production and removal of ROS suppress the potential blood pressure increase [7]. ...
Article
Full-text available
Objective: The aim of this study is to verify the effects of consuming proanthocyanidins derived from acacia bark on improving blood pressure and blood circulation in healthy Japanese adult subjects. Methods: This was a randomized, double-blind, placebo-controlled, parallel-comparison study involving 66 healthy Japanese adults. Subjects were allocated into either acacia or placebo group (n = 33 each) using a random number generator. Subjects consumed six tablets/day of either acacia bark extract tablets or placebo for 12 weeks. The primary outcome was the measured value of sitting systolic blood pressure at 12 weeks, whereas the secondary outcomes were sitting systolic and diastolic blood pressures, superoxide dismutase activity in blood, and blood flow. Results: The number of subjects analyzed as full analysis set was 33 (20 men and 13 women) in the Acacia group and 31 (23 men and 8 women) in the placebo group. Compared with the placebo group, the measured values and changes from baseline at 4, 8, and 12 weeks of the sitting systolic blood pressure were significantly lower in the Acacia group. Furthermore, "the ratio of the number of subjects whose sitting systolic blood pressure <130 mmHg and diastolic blood pressure ≤89 mmHg at 12 weeks"of the Acacia group was significantly higher than that of the placebo group. No adverse event was observed. Conclusions: Proanthocyanidins derived from acacia bark showed a hypotensive effect.
... Thus, it is expected that certain flavan-3-ols in BE may promote NO production directly in vascular endothelial cells after absorption from the intestinal tracts. Other reports also demonstrate that flavan-3-ols increase NO production via both the Akt/eNOS pathway and Ca2+ dependent pathway in vitro [17][18][19]. However, it is unclear whether BE promotes NO production at a lower concentration that is close to plasma or tissue concentration after their absorption. ...
... From these results, it is suggested that procyanidin C1 was a main active compound in BE for promotion of the NO production via the Akt/eNOS pathway at the lower concentration that is close to the plasma concentration in mice after BE intake. contains an abundance flavan-3-ols, and these compounds have been reported to increase NO production in vascular endothelial cells [17][18][19]. ...
Article
Full-text available
Background: Black soybean seed coat contains an abundance of flavan-3-ols and possesses various bioregulatory functions. Nitric oxide (NO) is produced by endothelial nitric oxide synthase (eNOS) in vascular endothelial cells and regulates vascular function through vasodilation and the inhibition of platelet aggregation in blood vessels. It has been reported that flavan-3-ols increase NO production, but many previous reports used a high concentration of flavan-3-ols. In the present study, we investigated the effect of flavan-3-ol-rich black soybean seed coat extract (BE) on NO production at a lower concentration that is close to the concentration after permeation through the monolayer of Caco-2 cells.Methods: Human umbilical vein endothelial cells (HUVEC) were incubated with BE, and then NO production in the medium and eNOS phosphorylation in the cells were examined. Intestinal epithelial Caco-2 cells on the upper side of a transwell filter were co-cultured with HUVEC on the basolateral compartment of the transwell apparatus. BE was added from the upper side, and the basolateral medium was collected to measure the concentration of NO and the content of flavan-3-ols. Furthermore, HUVEC were incubated with each flavan-3-ol in order to individuate the most effective compound in BE.Results: BE significantly increased NO production in the medium of HUVEC. When polyphenols in BE were removed from the basolateral medium by ethyl acetate extraction, increased NO production from HUVEC was not observed. Additionally, BE increased phosphorylation of eNOS and Akt in HUVEC. A portion of flavan-3-ols in BE had permeated through intestinal epithelial cells. Among the flavan-3-ols that had permeated, procyanidin C1 had the strongest effect on NO production in HUVEC at the concentration that had permeated the monolayer of Caco-2 cells. Procyanidin C1 (0.05 µM) also induced phosphorylation of eNOS and Akt in HUVEC without affecting the cAMP level. Conclusion: A portion of flavan-3-ols in BE directly promoted NO production through the Akt/eNOS pathway in vascular endothelial cells. These findings suggest that flavan-3-ols in the black soybean seed coat may contribute to improve the vascular function.Keywords: Black soybean seed coat polyphenols; NO; eNOS; Akt; vascular endothelial cells
... Additionally, an effective increase was observed at 134 µM DK ( Figure 2F). Activated p-PI3K can further stimulate downstream p-Akt expression [24]. As shown in Figure 2C, p-Akt expression was significantly increased in 30 and 100 µg/mL by a concentration-dependent manner. ...
Article
Full-text available
Nitric oxide (NO), an endothelial-derived relaxing factor synthesized by endothelial nitric oxide synthase (eNOS) in endothelial cells, enhances vasodilation by modulating vascular tone. The calcium concentration critically influences eNOS activation in endothelial cells. Thus, modulation of calcium-dependent signaling pathways may be a potential therapeutic strategy to enhance vasodilation. Marine algae reportedly possess protective effects against cardiovascular disorders, including hypertension and vascular dysfunction; however, the underlying molecular signaling pathways remain elusive. In the present study, we extracted and isolated dieckol from Ecklonia cava and investigated calcium transit-enhanced vasodilation. Calcium modulation via the well-known M3 muscarinic acetylcholine receptor (AchM3R), which is linked to NO formation, was investigated and the vasodilatory effect of dieckol was verified. Our results indicated that dieckol effectively promoted NO generation via the PI3K/Akt/eNOS axis and calcium transients influenced by AchM3R. We also treated Tg(flk: EGFP) transgenic zebrafish with dieckol to assess its vasodilatory effect. Dieckol promoted vasodilation by enlarging the dorsal aorta diameter, thus regulating blood flow velocity. In conclusion, our findings suggest that dieckol modulates calcium transit through AchM3R, increases endothelial-dependent NO production, and efficiently enhances vasodilation. Thus, E. cava and its derivative, dieckol, can be considered as potential natural vasodilators.
... In vivo, the polyphenols in grape seed can reduce pressure and arterial resistance in rabbits (12,13,15,16). Polyphenols can prevent atherosclerosis by oxidation of low-density lipoproteins (LDL) (15,17,18,19,20). Grape seed oil has 72-76% linoleic acid, compared with safflower 70-72%, sunflower 60-62% or corn oils 52% (22). ...
Article
Full-text available
Four groups of 5 Awassi male 2-3 month old lambs weighing 23.82 ± 0.16kg were fed control diet supplemented 5% or 10% dried red grape pomace with or without 5g Saccharomyces cerevisiae daily for 126 days. Controls were fed 3% concentrate with wheat straw daily. Body weight, blood and serum samples were determined every 21 days for hematology and biochemistry. Compared with controls, our results suggest that red grape supplement with or without Saccharomyces cerevisiae boosted hemoglobin, red blood cells and packed cell volumes (P < 0.05). We found that the supplements had no effect on serum cholesterol or triglyceride but did enhance high and low-density lipoprotein after 105-126 days feeding (P < 0.05). Serum GSH increased during the last weeks of supplementation (P < 0.05). However, the most significant (P < 0.01) results of our study were highly significant reductions in serum Malondialdehyde at all stages of the experiment in lambs given supplements.
... Because the ACh-induced eNOS activation is dependent on not the PI3K/Akt pathway but Ca 2+ /calmodulin. 8) In fact, other in vitro studies clearly demonstrated that GE-derived polyphenols enhanced eNOS expression and NO production [30][31][32] ; however, limited information is currently available on the in vivo effects of GE-derived polyphenols on NO biosynthesis and its bioavailability. We also failed to measure plasma NOx concentrations in GE-fed rats and directly show that enhancements in NO production are responsible for GE-induced NO production. ...
Article
Full-text available
Grape extract (GE), which contains various polyphenolic compounds, exerts protective effects against lifestyle-related diseases, such as diabetes and hypertension. We pharmacologically investigated whether dietary supplements with an extract from Chardonnay exerted antihypertensive effects in deoxycorticosterone acetate (DOCA)–salt-induced hypertensive rats. GE increased nitric oxide (NO) production by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in cultured endothelial cells and induced vasorelaxation in the aorta and mesenteric artery via the same pathway. The development and progression of hypertension by the DOCA–salt treatment was significantly inhibited in GE-fed rats. Reduced vasoreactive responses to acetylcholine in the aorta of DOCA–salt rats were significantly ameliorated by the GE diet. Dietary GE supplements slightly diminished vascular superoxide anion production induced by the DOCA–salt treatment. On the other hand, dietary GE supplements had no effect on the progression of hypertension in rats in which NO synthase was pharmacologically and chronically suppressed. In addition, the oral administration of GE for 5 d in healthy rats enhanced endothelial NO synthase (eNOS) gene expression and vascular reactivity to acetylcholine in the aorta. Thus, GE has endothelium-dependent vasorelaxant properties that are mediated by the activation of endothelial NO synthase via the PI3K/Akt pathway, and this mechanism is conducive to the antihypertensive effects of GE observed in DOCA–salt-treated rats. Graphical Abstract Fullsize Image
... 15 Moreover, in other studies, grape seed extract inhibited tumor necrosis factor-ainduced DNA oxidation in human umbilical vein endothelial cells (HUVECs), while grape skin and seed extracts inhibited glucose-induced increase in ROS in endothelial progenitor cells. 35,36 Feng et al. 37 have also reported that, in HUVECs, grape skin extract inhibited hydrogen peroxide (H 2 O 2 )-induced increase in ROS via activating the PI3-kinase/AKT pathway. ...
Article
A grape pomace extract enhanced antioxidant mechanisms in muscle and endothelial cells both in the absence and in the presence of oxidative stress-induced agent tert-butyl hydroperoxide (tBHP). In particular, muscle (C2C12) and endothelial (EA.hy926) cells were treated with the extract at noncytotoxic concentrations for 24 h, and the oxidative stress markers, total reactive oxygen species (ROS), glutathione (GSH), thiobarbituric reactive substances (TBARS), and protein carbonyl levels were assessed. The results showed that the grape extract treatment reduced significantly ROS, TBARS, and protein carbonyl levels and increased GSH in C2C12 cells, while it increased GSH and decreased protein carbonyl levels in EA.hy926 cells. In the presence of tBHP, the grape extract treatment in C2C12 cells reduced significantly ROS, TBARS, and protein carbonyls and increased GSH compared with tBHP alone treatment, while, in EA.hy926 cells, the extract decreased significantly TBARS and protein carbonyls but increased GSH. The antioxidant potency of the extract was different between muscle and endothelial cells suggesting that the antioxidant activity depends on cell type. Moreover, the antioxidant activity of the grape extract, in both cell lines, exerted, at least in part, through increase in GSH levels. The present work is the first to report the effects of grape extract shown for skeletal muscle cells.
... 54 Moreover, previous studies attributed to the protective effect of GSE against cardiovascular events and atherosclerosis and also to its ability to enhance eNOS expression and NO production in hydrogen peroxide-treated human umbilical vein endothelial cells in a dose-dependent manner. 55 In conclusion, GSE supplementation has beneficial and protective effects against some metabolic and biochemical changes associated with STZ-induced hyperglycaemia. These effects might be related to the ability of GSE to improve hyperglycaemia in addition to its anti-oxidant property. ...
Article
Full-text available
The current study aimed to investigate the possible beneficial effects of grape seed extract (GSE) on some metabolic and biochemical changes associated with streptozotocin (STZ; 50 mg/kg; i.p.)-induced hyperglycaemia in male rats. Blood samples were used to determine serum levels of glucose, insulin, total cholesterol (TC) and triglycerides (TG). Some biochemical markers for oxidative stress viz., serum lipid peroxides level (measured as malondialdehyde; MDA) and total antioxidant capacity as well as serum nitric oxide (NO) level were assessed. Hyperglycaemic animals received GSE (100 and 300 mg/kg/day) orally on daily basis for 28 consecutive days and their effects were determined 24 h after the administration of the last dose. Results of the present study revealed that STZ-induced hyperglycaemia is associated with decreased serum insulin level with increased levels of TC and TG. Hyperglycaemia was also associated with increased level of serum MDA together with decreased total antioxidant capacity and level of serum NO. GSE succeeded to improve the serum glucose level in STZ-treated rats in a dose dependent manner. It also showed a restoration of the increased serum level of TC, TG and MDA and of the suppressed insulin and total antioxidant capacity as well as the decreased plasma level of NO. From our results it can be concluded that GSE has beneficial effects against the biochemical changes associated with STZ-induced hyperglycaemia. These beneficial effects might be related to the ability of GSE to improve hyperglycaemia in addition to its anti-oxidant property.
... In one study in rats, it has been demonstrated that red wine extract (Provinols) lowered BP via an NO synthesis-dependent pathway (41) . Also, in vitro studies have indicated the effects of GSE on NO availability (34,42) . NO is released in response to a variety of chemical and physical stimuli and causes the smooth muscle in the vessel wall to relax. ...
Article
Full-text available
Dietary polyphenols, such as those from grape products, may exert beneficial effects on cardiovascular health, including anti-hypertensive effects. We investigated the effect of a specific grape seed extract (GSE) rich in low-molecular-weight polyphenolic compounds on ambulatory blood pressure (ABP) in untreated subjects with pre- and stage I hypertension. In addition, potential mechanisms that could underlie the hypothesised effect of GSE on blood pressure (BP), and platelet aggregation, were explored. The study was designed as a double-blind, placebo-controlled, randomised, parallel-group intervention study including seventy healthy subjects with systolic BP between 120 and 159 mmHg. A 1-week run-in period was followed by an 8-week intervention period, during which subjects consumed capsules containing either 300 mg/d of GSE or a placebo (microcrystalline cellulose). Before and after the intervention, daytime ABP readings, 24 h urine samples and fasting and non-fasting blood samples were taken. The mean baseline systolic BP was 135·8 (se 1·3) mmHg and diastolic BP was 81·5 (se 0·9) mmHg. BP values were modestly, but not significantly, affected by the polyphenol-rich GSE treatment v. placebo with an effect of - 3·0 mmHg for systolic BP (95 % CI - 6·5, 0·5) and - 1·4 mmHg for diastolic BP (95 % CI - 3·5, 0·6). Vasoactive markers including endothelin-1, NO metabolites and asymmetric dimethylarginine, plasma renin activity and platelet aggregation were not affected by the GSE intervention. Our findings show that consumption of polyphenol-rich GSE does not significantly lower ABP in untreated subjects with pre- and stage I hypertension.
... In addition to its actions as a vasodilator, the potent anti-hypertrophic effect of NO in myocytes is wellestablished. 36 Since a variety of grape-derived products such as grape juice, 37 grape seed, 38 and skin 39 extracts act through enhanced endothelial NO synthase (eNOS) expression and/ or activity, it is plausible that the effects we observed in SHR are mediated by improved NO signaling. However, our data indicate that eNOS gene expression was similar between WKY and SHR mesenteric arteries, and unaffected in either strain by grape powder treatment (see Supplementary Data online). ...
Article
Full-text available
Background We previously reported that resveratrol, a polyphenol found in red grapes, attenuated changes in small artery geometry and stiffness, as well as cardiac hypertrophy and cardiac function in the spontaneously hypertensive rat (SHR). However, in addition to resveratrol, grapes contain a variety of bioactive polyphenols such as catechins, anthocyanins, and flavonoids. Therefore, we investigated the effects of grape consumption in SHR.Methods Wistar-Kyoto (WKY) rats and SHR were treated with freeze-dried grape powder for 10 weeks. Dilatory, geometry, and stiffness properties of mesenteric small arteries were assessed by pressurized myography. Left ventricular mass index and cardiac function were assessed by two-dimensional guided M-mode and pulse-wave Doppler echocardiography.ResultsElevated blood pressure in SHR was associated with remodeling and impaired endothelium-dependent relaxation of small arteries. Augmented left ventricular mass index (reflecting hypertrophy) and diminished cardiac function were also evident in SHR. Although grape treatment failed to affect cardiac dysfunction, it elicited a significant reduction in blood pressure, improved arterial relaxation, increased vascular compliance, and attenuated cardiac hypertrophy.Conclusions Treatment with whole grape powder conferred mild vascular and cardiac benefits in SHR. Therefore, dietary grape consumption may be a feasible and salutary adjunct to pharmacological treatment of human hypertension.American Journal of Hypertension 2012; doi:10.1038/ajh.2012.98.
Article
Objectives High blood pressure (BP) is a major risk factor for cardiovascular disease and prevalence rates continue to rise with ageing populations. Polypharmacy remains a burden among the ageing, thus alternative effective strategies are warranted. This study investigated the effects of a polyphenols rich dietary supplement containing Pinus Massoniana bark extract (PMBE) for modulating BP in healthy Australian adults. Design This study is a secondary analysis of data from a double-blinded, placebo-controlled clinical trial. Methods Sixty-two healthy adults aged 55-75 years were randomized to receive 50 mL dietary supplement containing placebo (0 mg PMBE) or PMBE (1322 mg PMBE) daily for 12 weeks. Seated systolic BP (SBP) and diastolic (DBP) were measured at baseline, 6 weeks and 12 weeks. Effects of PMBE on modulating BP was also explored in this study stratified for SBP status (optimal v high) as well as by SBP medication status. Mixed effect regression modelling was employed involving fixed categorical effects for elapsed time, treatment assignment and their interaction as well as random subject-level intercept to account for within-subject correlations resulting from repeated measurements. Significant models were further examined by addition of covariates and power calculations were performed since this study was a secondary analysis. Results SBP significantly reduced (-3.29 mmHg, p=0.028) after PMBE at 12 weeks compared to baseline. SBP in individuals with normal-high SBP (>120 mmHg) in the PMBE group reduced by -6.46 mmHg (p=0.001) at 12 weeks compared to baseline. No significant changes were reported for individuals with optimal (≤120 mmHg) SBP nor did DBP significantly change in either study groups. In individuals with non-medicated normal-high SBP, SBP significantly reduced by -7.49 mmHg (p=0.001) and DBP by -3.06 mmHg (p=0.011) at 12 weeks compared to baseline after PMBE. Cross-group comparisons were not statistically different. Conclusions A polyphenol-rich dietary supplement derived from PMBE led to a clinically and statistically significant reduction in SBP in adults. Future studies to investigate the effects of PMBE-polyphenol supplementation on BP are warranted to confirm and explore optimal dose and impact on hypertension.
Article
Full-text available
Cardiovascular disease (CVD), such as hypertension and atherosclerosis, are the leading cause of global death. Endothelial dysfunction (ED) is a strong predictor for most CVD making it a therapeutic target for both drug and nutrition interventions. It has been previously shown that polyphenols from wine and grape extracts possess vasodilator activities, due to the increased expression and phosphorylation of the endothelial nitric oxide synthase (eNOS), and consequent vasodilator nitric oxide (NO) production. This is vital in the prevention of endothelial dysfunction, as NO production contributes to the maintenance of endothelial homeostasis. Moreover, polyphenols have the ability to inhibit reactive oxygen species (ROS) which can cause oxidative stress, as well as suppress the upregulation of inflammatory markers within the endothelium. However, while the majority of the research has focused on red wine, this has overshadowed the potential of other nutritional components for targeting ED, such as the use of berries. Berries are high in anthocyanin flavonoids a subtype of polyphenols with studies suggesting improved vascular function as a result of inducing NO production and reducing oxidative stress and inflammation. This review focuses on the protective effects of berries within the vasculature. This article is protected by copyright. All rights reserved
Article
Black soybean (Glycine max L), a cultivar containing abundant polyphenols in its seed coat such as anthocyanins and flavan-3-ols, has been reported to possess various health benefits toward lifestyle diseases. In this review article, the safety evaluation of polyphenol-rich black soybean seed coat extract (BE), and absorption of BE polyphenols are summarized. Additionally, we describe the antioxidant activity of BE polyphenols and their ability to induce antioxidant enzymes. The health benefits of BE and its polyphenols, such as its anti-obesity and anti-hyperglycemic activities through the activation of AMP-activated protein kinase and translocation of glucose transporter 4, respectively, are also discussed. Furthermore, we identified the improvement of vascular function by BE. These emerging data require further investigation in scientific studies and human trials to evaluate the prevention of lifestyle diseases using black soybean polyphenols.
Article
Black soybean seed coat polyphenols were reported to possess various bioregulatory functions. However, the effects of black soybean seed coat polyphenols on vascular functions are unknown. Vascular dysfunction caused by aging and vascular stiffness is associated with a risk of cardiovascular disease (CVD), and a reduction in nitric oxide (NO) levels can trigger the onset of CVD. In the present study, we investigated the effect of polyphenol-rich black soybean extract (BE) on vascular functions and the underlying mechanisms involved. The oral administration of BE at 50 mg/kg body weight to Wistar rats increased NO levels as determined by eNOS phosphorylation. The administration of BE also increased GLP-1 and cAMP levels. Furthermore, the effects of BE were inhibited in the presence of a GLP-1 receptor antagonist. This suggests that GLP-1 is strongly involved in the underlying mechanism of NO production in vivo. In conclusion, BE contributes to the improvement of vascular function by promoting NO production. Regarding the putative underlying mechanism, GLP-1 secreted from intestinal cells by the polyphenols in BE activates eNOS in vascular endothelial cells.
Article
Oxidative stress is closely associated with the onset of diabetes mellitus (DM). Diabetic urethropathy is one of the most common complications of DM, but few studies have been conducted to investigate the role of oxidative stress in diabetic urethropathy. Grape seed proanthocyanidin extract (GSPE) has been previously reported to reduce oxidative injury. The present study aimed to investigate the role of oxidative stress and the protective effects of GSPE on urethral dysfunction using a streptozotocin-induced DM rat model. Female Wistar rats were divided into a control group (n=36), a DM group (n=36) and a DM + GSPE group (n=36). Urodynamic testing was performed using a PowerLab data acquisition device. The expression of neuronal nitric oxide synthase (nNOS), 3-nitrotyrosine and nuclear factor erythroid 2-related factor 2 (Nrf2) was determined using western blot analysis. The expression of 3-nitrotyrosine was also determined using immunohistochemistry. Nitric oxide (NO), cyclic guanosine monophosphate (cGMP), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were measured using commercial ELISA kits. A significant increase was observed in the intravesical pressure thresholds for inducing urethral relaxation and the urethral perfusion pressure nadir in DM rats compared with the control group. GSPE was observed to reverse the increase of these parameters compared with the DM group. In addition, GSPE could reverse the downregulation of nNOS, NO and cGMP expression, and the decreased activities of antioxidant enzymes (SOD and GSH-Px). GSPE reversed the upregulation of 3-nitrotyrosine and MDA in DM rats. GSPE also activated Nrf2, which is a key antioxidative transcription factor. The findings of the present study demonstrated that GSPE protects urethra function in DM rats through modulating the NO-cGMP signaling pathway. The protective roles of GSPE may be associated with activation of the Nrf2 defense pathway.
Article
Background: Vitis vinifera L. (grape seed extract) is a natural source of proanthocyanidins with antioxidant and free radical-scavenging activities. Hypothesis: Grape seed extract supplementation may prevent vascular endothelium impairment associated with diabetes mellitus in rat pulmonary artery. Study design: We evaluated endothelial function of rat pulmonary artery ex-vivo at the intermediate stage (4 weeks) of streptozotocin (STZ)-induced diabetes mellitus. We also evaluated the protective effect of grape seed extract administered daily, beginning the day after diabetes induction, or 15 days after diabetes induction, until the day of sacrifice. In addition, we compared the effect of grape seed extract supplementation with that of vitamin C. Methods: Rats were made diabetic with streptozotocin (STZ, 65mg/kg i.v.). Thirty days later rats were sacrificed and pulmonary vessels reactivity and endothelial function compared to that of age-matched healthy animals. Results: Concentration-response curves to ACh, NE, sodium nitroprusside (NO donor), but not to histamine and iloprost (prostacyclin analog), were significantly altered 4 weeks after STZ-injection. Antioxidant supplementation (3mg/kg/day) with either vitamin C or grape seed extract, starting the day after diabetes induction, significantly improved vasodilation to ACh and SNP. Norepinephrine-induced contractions were preserved by grape seed extract, but not vitamin C supplementation. Conversely, vitamin C but not grape seed extract showed beneficial effects contrasting the loss of body weight in diabetic animals. Abnormal vascular function was not reversed when antioxidant supplementations were postponed 15 days after the induction of diabetes. Conclusions: This study provides scientific support for the therapeutic potential of an antioxidant therapy in endothelial impairment associated with diabetes. A daily supplementation of grape seed proanthocyanidins and/or vitamin C given at the earlier stage of disease may have a complementary role in the pharmacological therapy of diabetes and pulmonary vascular dysfunction.
Chapter
The oxidative damage to cellular components has been found to be responsible for a number of chronic diseases including cancer. It has been shown beyond any doubt that these damaging events are caused by free radicals. Antioxidants are the defense system in vivo and there are several lines of defense. Polyphenolic compounds are the other important radical scavenging antioxidants. There are several sources of natural antioxidants such as herbs and spices. However, there are other natural products such as cereals, nuts, oilseeds, legumes, vegetables, animal products, and microbial products which can serve as rich sources of natural antioxidants. The richest sources of polyphenols are various spices and dried herbs, cocoa products, some darkly colored berries, some seeds (flaxseed) and nuts (chestnut, hazelnut, walnut), and some vegetables, including olive and globe artichoke heads. This chapter describes the antioxidant properties of these sources in great detail.
Chapter
Coriander is a strongly aromatic, erect, herbaceous annual herb with strong antioxidant activity and this antioxidant activity correlated well with the phenolic compounds. This chapter describes the botany, history, producing regions, flavor and aroma, parts used, and active constituents. The chapter also highlights the uses of coriander in different recipes around the world. Coriander has been reported to have antibacterial, spasmolytic, stomachic, carminative, antimicrobial, antifungal, cholesterol-lowering, anti-inflammatory, and antioxidant properties. Finally the medicinal uses, functional properties, and antioxidant properties of coriander are discussed in great detail.
Article
Isolated phytochemicals have been shown to reduce blood pressure; however, combinations of phytochemicals have rarely been tested in humans. We hypothesized that a combination of extracts from grape seed and skin (330 mg), green tea (100 mg), resveratrol (60 mg) and a blend of quercetin, ginkgo biloba and bilberry (60 mg) would reduce blood pressure (BP) in hypertensive subjects. Eighteen individuals meeting BP requirements (⩾130 mm Hg systolic or ⩾85 mm Hg diastolic) and criteria for metabolic syndrome were enrolled in a double-blinded, placebo-controlled, crossover trial (ClinicalTrials.gov, NCT01106170). The 28-day placebo and supplement arms were separated by a 2-week washout period, and 14 -h daytime ambulatory BP was assessed at baseline and at the end point of each arm. BP was not altered after placebo. After supplement treatment, diastolic pressure was reduced by 4.4 mm Hg (P=0.024, 95% CI, 0.6-8.1), systolic pressure was unchanged and mean arterial pressure trended (P=0.052) toward reduction. Serum angiotensin-converting enzyme activity was similar between placebo and supplement arms, but urinary nitrate and nitrite concentrations were significantly increased (P=0.022) after supplementation. Human aortic endothelial cells treated with metabolites of the polyphenols used in the human supplement trial had a significant increase (P=0.005) in insulin-stimulated eNOS phosphorylation and greater (P<0.001) accumulation of nitrates/nitrites. Our clinical and in vitro data support the theory that this combination of polyphenols reduced diastolic pressure by potentiating eNOS activation and nitric oxide production. Such supplements may have clinical relevance as stand-alone or adjunct therapy to help reduce BP.European Journal of Clinical Nutrition advance online publication, 10 June 2015; doi:10.1038/ejcn.2015.88.
Article
Grape seed proanthocyanidin extracts (GSPE) belonging to polyphenols, possess various biological effects including anti-inflammation, anti-oxidant, anti-aging, anti-atherosclerosis, etc. GSPE is potential in regulating endothelial function. However, the underlying mechanism is not clear yet. In this study, by small interfering RNA (siRNA) knocking down, we proved that GSPE increase endothelial nitric oxide synthase (eNOS) expression in human umbilical vessel cells (HUVECs) in vitro, which was attributed to its transcription factor Krüpple like factor 2 (KLF2) induction. Furthermore, GSPE activate 5′-AMP activated protein kinase (AMPK) and increase surtuin 1 (SIRT1) protein level, critical for KLF2 induction. We also illuminated the role of GSPE in hypertension treatment. By chronic administration of GSPE in ouabain induced hypertensive rats model, we access the effect of GSPE on blood pressure regulation and the possible mechanisms involved. After 5 weeks feeding, GSPE significantly block the ouabain induced blood pressure increase. The aortic NO production impaired by ouabain was improved. In conclusion, GSPE increase eNOS expression and NO production in an AMPK/SIRT1 dependent manner through KLF2 induction, and attenuate ouabain induced hypertension.
Article
Cadmium (Cd) is a potent neurotoxic heavy metal, known to induce oxidative stress and membrane disturbances in brain. Proanthocyanidins (PACs), the most abundant polyphenol class in the human diet, have protective effects on oxidative stress and other metabolic disorders. Based on the cellular protective effect of PACs, we aimed to investigate whether PACs could protect the neuronal cells from Cd-induced excitotoxicity. The experiment was carried out on mice model and also in primary culture of hippocampal neurons isolated from neonatal mice. The Cd-induced changes in acetylcholinesterase (AChE) activity, oxidative stress markers (lipid peroxidation/lipid hydroperoxidation), antioxidant status and Akt phosphorylation were measured in the mice brain with or without PACs treatment. Mice intoxicated with cadmium (5 mg/kg/day) for 4 weeks had significantly (p<0.05) reduced the AChE levels, elevated the levels of oxidative stress markers along with the significant (p<0.05) decrease in the levels of both enzymatic antioxidants and non-enzymatic antioxidants in mice brain tissue. In contrast, administration of PACs (100 mg/kg/day) for 4 weeks in cadmium-intoxicated mice had significantly (p<0.05) protected the cadmium-mediated changes. In addition, PACs treatment in cultured mice hippocampal neurons had protected Cd-induced excitotoxicity by activating Akt phosphorylation, decreasing the caspase-3 level and improving the neuronal cell survival rate up to 24 h. Altogether, our data suggest that PACs plays a crucial role on neuroprotection in combating the cadmium induced oxidative neurotoxicity in mice brain by influencing the activation of AChE/Akt phosphorylation, antioxidant status, controlling the membrane damage (lipid peroxidation) and apoptotic protein caspase-3. © Georg Thieme Verlag KG Stuttgart · New York.
Article
Activation of reactive oxygen species and inflammation are implicated in renal ischemia/reperfusion (I/R) injuries. This study investigated whether grape seed proanthocyanidin extract (GSPE) protects against renal I/R injury by its effect on reactive oxygen species and the inflammation pathway. Wistar rats were administered GSPE before renal ischemia, followed by reperfusion for 24 hours. Plasma concentrations of urea, creatinine and cystatin C were measured for renal dysfunction. Serum and tissue superoxide dismutase activity and glutathione peroxidase and malondialdehyde levels were measured. Renal sections were analyzed for histological grading of renal injury, and nuclear factor-ĸB activity was determined. GSPE significantly reduced increases in urea, creatinine and cystatin C; increased kidney superoxide dismutase activity and glutathione peroxidase levels and reduced malondialdehyde levels. GSPE reduced histological renal damage and nuclear factor-ĸB activity. These results suggest that GSPE reduces renal dysfunction and injury caused by renal I/R.
Article
To evaluate the ability of grape skin and seeds to protect endothelial progenitor cells (EPC) from oxidative stress induced by hyperglycemia (HG) compared to red wine (RW) and prepare innovative pharmaceutical systems for the oral administration of red grape extract allowing the overcoming of its poor intestinal absorption. Human EPC were characterized by expression of cell surface markers. Cells were incubated with different concentrations of total polyphenols from grape components or RW in the presence or absence of HG. Cell viability, migration, adhesion, and reactive oxygen species (ROS) production were assayed. Intestinal permeation of polyphenols was studied in the absence or presence of a quaternary ammonium-chitosan conjugate (N⁺(60)-Ch). Grape components and RW increased EPC viability, adhesion and migration, and prevented the HG effect (P < 0.01). ROS production induced by HG was significantly reduced only by grape seed extract and RW (P < 0.01). N⁺(60)-Ch acted as an effective enhancer of polyphenol permeability across the excised rat intestine. Red grape components are a source of antioxidant compounds that ameliorate EPC viability and function, while preventing endothelial dysfunction. The use of polycationic chitosan derivatives can promote the absorption of polyphenols across intestinal epithelium, thus increasing their bioavailability and potential therapeutic value in atherosclerosis.
Article
Blood pressure within prehypertensive levels confers higher cardiovascular risk. As prehypertension is also an intermediate stage for full hypertension, a precocious intervention with lifestyle changes or drugs is therefore appealing. Endothelial injury and dysfunction are thought to contribute to cardiovascular risk in prehypertension. Endothelial progenitor cell impairment has been linked to endothelial dysfunction, atherosclerotic disease progression and cardiovascular events. A potential mechanism contributing to the heightened cardiovascular risk in prehypertension may be linked to abnormalities in endothelial progenitor cell number and/or function. Aim of this review is to be up to date about the recent work on the correlation between endothelial progenitor cells and prehypertension and the possible prevention, treatment, and control of this pathology. The effect of an approach based on dietary intervention on both blood pressure and endothelial progenitor cells will be also shown.
Article
Full-text available
Since its introduction to Ca2+ signaling in 1997, 2-aminoethoxydiphenyl borate (2-APB) has been used in many studies to probe for the involvement of inositol 1,4,5-trisphosphate receptors in the generation of Ca2+ signals. Due to reports of some nonspecific actions of 2-APB, and the fact that its principal antagonistic effect is on Ca2+ entry rather than Ca2+ release, this compound may not have the utility first suggested. However, 2-APB has thrown up some interesting results, particularly with respect to store-operated Ca2+ entry in nonexcitable cells. These data indicate that although it must be used with caution, 2-APB can be useful in probing certain aspects of Ca2+ signaling.—Bootman, M. D., Collins, T. J., Mackenzie, L., Roderick, H. L., Berridge, M. J., Peppiatt, C. M. 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release.
Article
Full-text available
Activation of receptors for a wide variety of hormones and neurotransmitters leads to an increase in the intracellular level of calcium. Much of this calcium is released from intracellular stores but the link between surface receptors and this internal calcium reservoir is unknown. Hydrolysis of the phosphoinositides, which is another characteristic feature of these receptors, has been implicated in calcium mobilization. The primary lipid substrates for the receptor mechanism seem to be two polyphosphoinositides, phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2), which are rapidly hydrolysed following receptor activation in various cells and tissues. The action of phospholipase C on these polyphosphoinositides results in the rapid formation of the water-soluble products inositol 1,4-bisphosphate (Ins1,4P2) and inositol 1,4,5-trisphosphate (Ins1,4,5P3). In the insect salivary gland, where changes in Ins1,4P2 and Ins1,4,5P2 have been studied at early time periods, increases in these inositol phosphates are sufficiently rapid to suggest that they might mobilize internal calcium. We report here that micromolar concentrations of Ins1,4,5P3 release Ca2+ from a nonmitochondrial intracellular Ca2+ store in pancreatic acinar cells. Our results strongly suggest that this is the same Ca2+ store that is released by acetylcholine.
Article
Full-text available
Flavonoids are strong antioxidants that occur naturally in foods and can inhibit carcinogenesis in rodents. Accurate data on population-wide intakes of flavonoids are not available. Here, using data of the Dutch National Food Consumption Survey 1987-1988, we report the intake of the potentially anticarcinogenic flavonoids quercetin, kaempferol, myricetin, apigenin, and luteolin among 4,112 adults. The flavonoid content of vegetables, fruits, and beverages was determined by high-performance liquid chromatography. In all subjects, average intake of all flavonoids combined was 23 mg/day. The most important flavonoid was the flavonol quercetin (mean intake 16 mg/day). The most important sources of flavonoids were tea (48% of total intake), onions (29%), and apples (7%). Flavonoid intake did not vary between seasons; it was not correlated with total energy intake (r = 0.001), and it was only weakly correlated with the intake of vitamin A (retinol equivalents, r = 0.14), dietary fiber (r = 0.21), and vitamin C (r = 0.26). Our use of new analytic technology suggests that in the past flavonoid intake has been overestimated fivefold. However, on a milligram-per-day basis, the intake of the antioxidant flavonoids still exceeded that of the antioxidants beta-carotene and vitamin E. Thus flavonoids represent an important source of antioxidants in the human diet.
Article
Full-text available
Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.
Article
Full-text available
Altered expression of cell adhesion molecule expression has been implicated in a variety of chronic inflammatory conditions. Regulation of adhesion molecule expression by specific redox sensitive mechanisms has been reported. Grape seed proanthocyanidins have been reported to have potent antioxidant properties. We evaluated the effects of grape seed proanthocyanidin extract (GSPE) on the expression of TNFalpha-induced ICAM-1 and VCAM-1 expression in primary human umbilical vein endothelial cells (HUVEC). GSPE at low concentrations (1-5 micrograms/ml), down-regulated TNFalpha-induced VCAM-1 expression but not ICAM-1 expression in HUVEC. Such regulation of inducible VCAM-1 by GSPE was also observed at the mRNA expression level. A cell-cell co-culture assay was performed to verify whether the inhibitory effect of GSPE on the expression of VCAM-1 was also effective in down-regulating actual endothelial cell/leukocyte interaction. GSPE treatment significantly decreased TNFalpha-induced adherence of T-cells to HUVEC. Although several studies have postulated NF-kappaB as the molecular site where redox active substances act to regulate agonist-induced ICAM-1 and VCAM-1 gene expression, inhibition of inducible VCAM-1 gene expression by GSPE was not through a NF-kappaB-dependent pathway as detected by a NF-kappaB reporter assay. The potent inhibitory effect of low concentrations of GSPE on agonist-induced VCAM-1 expression suggests therapeutic potential of this extract in inflammatory conditions and other pathologies involving altered expression of VCAM- 1.
Article
Full-text available
Since its introduction to Ca2+ signaling in 1997, 2-aminoethoxydiphenyl borate (2-APB) has been used in many studies to probe for the involvement of inositol 1,4,5-trisphosphate receptors in the generation of Ca2+ signals. Due to reports of some nonspecific actions of 2-APB, and the fact that its principal antagonistic effect is on Ca2+ entry rather than Ca2+ release, this compound may not have the utility first suggested. However, 2-APB has thrown up some interesting results, particularly with respect to store-operated Ca2+ entry in nonexcitable cells. These data indicate that although it must be used with caution, 2-APB can be useful in probing certain aspects of Ca2+ signaling.
Article
Full-text available
Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.
Article
Full-text available
An enhanced endothelial formation of nitric oxide (NO) by red wine polyphenolic compounds (RWPs) has been involved in the protective effect of chronic intake of red wine on coronary diseases. However, the mechanism underlying the activation of endothelial NO synthase (eNOS) remains unclear. In the presence of indomethacin and charybdotoxin plus apamin to prevent the formation of prostanoids and endothelium-derived hyperpolarizing factor, respectively, RWPs caused pronounced endothelium-dependent relaxations in porcine coronary arteries. Relaxations to RWPs were abolished by N(omega)-nitro-L-arginine (L-NA, a competitive inhibitor of NO synthase) and the membrane permeant analog of superoxide dismutase (SOD), MnTMPyP, and reduced by polyethylene glycol-SOD (PEG-SOD), PEG-catalase and inhibitors of PI3-kinase (wortmannin and LY294002). RWPs caused the L-NA-sensitive formation of NO, as assessed by electron spin resonance spectroscopy and the formation of cyclic guanosine monophosphate in coronary artery endothelial cells; these responses were reduced by MnTMPyP, PEG-catalase, and inhibitors of PI3-kinase. RWPs caused the sustained phosphorylation of Akt and eNOS at Ser1177 in endothelial cells, which were abolished by MnTMPyP and inhibitors of PI3-kinase. These data demonstrate that RWPs induce the redox-sensitive activation of the PI3-kinase/Akt pathway in endothelial cells which, in turn, causes phosphorylation of eNOS, resulting in an increased formation of NO.
Article
Full-text available
GSEs (grape seed extracts) which contain polyphenolic compounds cause an endothelium-dependent relaxation of blood vessels. The aim of the present study was to examine the mechanisms involved in this response. A well-characterized GSE was applied to rabbit aortic rings suspended in organ baths containing Krebs-Henseleit buffer maintained at 37 degrees C. In aortic rings pre-contacted with noradrenaline (norepinephrine), the extract produced a dose-dependent relaxation. The maximum relaxations elicited by the extract (71.9+/-1.0%) were similar to those elicited by acetylcholine (64.2+/-1.5%) (n=12 for each). As expected, the relaxations were abolished by removal of the endothelium and by prior incubation with L-NAME (N(G)-nitro-L-arginine methyl ester), confirming the essential role of eNOS (endothelial NO synthase) in the response. The responses to the GSE were also abolished by incubation with wortmannin and LY294002, which are inhibitors of PI3K (phosphoinositide 3-kinase). These compounds had no effect on the responses to acetylcholine. Using immunoblotting, we also demonstrated that the GSE induced the phosphorylation of both Akt and eNOS in HUVECs (human umbilical vein endothelial cells). Finally, the extract was modified by methylation of the hydroxy groups in the polyphenolic groups and was applied to the aortic rings. The modified extract failed to cause a relaxation. Taken together, these findings suggest that the endothelium-dependent relaxation induced by the GSE was mediated by activation of the PI3K/Akt signalling pathway through a redox-sensitive mechanism, resulting in phosphorylation of eNOS.
Article
Full-text available
The present study investigates the mechanisms related to the endogenous nitric oxide synthase (eNOS) activation in the relaxant effects of a proanthocyanidin-rich fraction (PRF), obtained from Croton celtidifolius Baill barks, in rat thoracic aorta rings with endothelium. In vessels pre-contracted with phenylephrine (Phe), PRF (0.1 - 100 microg/mL) induced a concentration-dependent relaxation. This effect was significantly reduced by endothelium denudation, by N(omega)-nitro-L-arginine, and by 1H[1,2,3]oxadiazolo[4,3-alpha]quinoxalin. However, the vasorelaxant effect was not altered by indomethacin, atropine, tetraethylammonium, and charybdotoxin plus apamin. In thoracic aorta rings pre-contracted with phorbol-12,13-dibuyrate, PRF also induced a concentration-dependent relaxation. The PRF-induced relaxation disappeared in the absence of extracellular calcium in the medium and decreased significantly in the presence of lanthanum. A sulfhydryl alkylating agent, N-ethylmaleimide, and a phospholipase C (PLC) blocker, neomycin, significantly decreased PRF-induced vasorelaxation. In vessels pre-contracted with Phe, the PRF-induced vasorelaxant effect was not altered by quinacrine and ONO-RS-082, genistein and thyrphostin A-23, GF109203, and pertussis toxin and cholera toxin. The results suggest that the PRF-induced vasorelaxant effect is endothelium-dependent and involves the NO/cGMP pathway. We hypothesize that the activation of eNOS is due to an increase of intracellular calcium derived from PLC activation and an N-ethylmaleimide sensitive pathway.
Article
Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.
Article
The objective of this study was to determine whether nitric oxide (NO) is responsible for the vascular smooth muscle relaxation elicited by endothelium-derived relaxing factor (EDRF). EDRF is an unstable humoral substance released from artery and vein that mediates the action of endothelium-dependent vasodilators. NO is an unstable endothelium-independent vasodilator that is released from vasodilator drugs such as nitroprusside and glyceryl trinitrate. We have repeatedly observed that the actions of NO on vascular smooth muscle closely resemble those of EDRF. In the present study the vascular effects of EDRF released from perfused bovine intrapulmonary artery and vein were compared with the effects of NO delivered by superfusion over endothelium-denuded arterial and venous strips arranged in a cascade. EDRF was indistinguishable from NO in that both were labile (t1/2 = 3-5 sec), inactivated by pyrogallol or superoxide anion, stabilized by superoxide dismutase, and inhibited by oxyhemoglobin or potassium. Both EDRF and NO produced comparable increases in cyclic GMP accumulation in artery and vein, and this cyclic GMP accumulation was inhibited by pyrogallol, oxyhemoglobin, potassium, and methylene blue. EDRF was identified chemically as NO, or a labile nitroso species, by two procedures. First, like NO, EDRF released from freshly isolated aortic endothelial cells reacted with hemoglobin to yield nitrosylhemoglobin. Second, EDRF and NO each similarly promoted the diazotization of sulfanilic acid and yielded the same reaction product after coupling with N-(1-naphthyl)-ethylenediamine. Thus, EDRF released from artery and vein possesses identical biological and chemical properties as NO.
Article
Background: Epidemiological studies suggested that consumption of fruit and vegetables may protect against stroke. The hypothesis that dietary antioxidant vitamins and flavonoids account for this observation is investigated in a prospective study. Methods: A cohort of 552 men aged 50 to 69 years was examined in 1970 and followed up for 15 years. Mean nutrient and food intake was calculated from crosscheck dietary histories taken in 1960, 1965, and 1970. The association between antioxidants, selected foods, and stroke incidence was assessed by Cox proportional hazards regression analysis. Adjustment was made for confounding by age, systolic blood pressure, serum cholesterol, cigarette smoking, energy intake, and consumption of fish and alcohol. Results: Forty-two cases of first fatal or nonfatal stroke were documented Dietary flavonoids (mainly quercetin) were inversely associated with stroke incidence after adjustment for potential confounders, including antioxidant vitamins. The relative risk (RR) of the highest vs the lowest quartile of flavonoid intake (greater than or equal to 28.6 mg/d vs <18.3 mg/d) was 0.27 (95% confidence interval [CI], 0.11 to 0.70). A lower stroke risk was also observed for the highest quartile of beta-carotene intake (RR, 0.54; 95% CI, 0.22 to 1.33). The intake of vitamin C and vitamin E was not associated with stroke risk. Black tea contributed about 70% to flavonoid intake. The RR for a daily consumption of 4.7 cups or more of tea vs less than 2.6 cups of tea was 0.31 (95% CI, 0.12 to 0.84). Conclusions: The habitual intake of flavonoids and their major source (tea) may protect against stroke.
Article
Objective: To determine whether flavonoid intake explains differences in mortality rates from chronic diseases between populations.Design: Cross-cultural correlation study.Setting/Participants: Sixteen cohorts of the Seven Countries Study in whom flavonoid intake at baseline around 1960 was estimated by flavonoid analysis of equivalent food composites that represented the average diet in the cohorts.Main Outcome Measures: Mortality from coronary heart disease, cancer (various sites), and all causes in the 16 cohorts after 25 years of follow-up.Results: Average intake of antioxidant flavonoids was inversely associated with mortality from coronary heart disease and explained about 25% of the variance in coronary heart disease rates in the 16 cohorts. In multivariate analysis, intake of saturated fat (73%; P=.0001), flavonoid intake (8%; P=.01), and percentage of smokers per cohort (9%; P=.03) explained together, independent of intake of alcohol and antioxidant vitamins, 90% of the variance in coronary heart disease rates. Flavonoid intake was not independently associated with mortality from other causes.Conclusions: Average flavonoid intake may partly contribute to differences in coronary heart disease mortality across populations, but it does not seem to be an important determinant of cancer mortality.(Arch Intern Med. 1995;155:381-386)
Article
Background: To investigate the possible relationship between intake of flavonoids-powerful dietary antioxidants that may also inhibit P450 enzymes-and lung cancer risk, we conducted a population-based, case-control study in Hawaii. Methods: An in-person interview assessed smoking history and usual intake of 242 food items for 582 patients with incident lung cancer and 582 age-, sex-, and ethnicity-matched control subjects. Subjects who donated a blood sample were genotyped for the P450 enzyme variant allele CYP1A1 * 2 by use of a polymerase chain reaction-based method. Logistic regression analysis was used to compute odds ratios (ORs) and 95% confidence intervals (CIs). All P values are two-sided. Results: After adjusting for smoking and intakes of saturated fat and β-carotene, we found statistically significant inverse associations between lung cancer risk and the main food sources of the flavonoids quercetin (onions and apples) and naringin (white grapefruit). The lung cancer OR for the highest compared with the lowest quartile of intake was 0.5 (95% CI = 0.3-0.9) for onions (P for trend =.001) and 0.6 (95% CI = 0.4-1.0) for apples (P for trend =.03). The OR for the highest compared with the lowest tertile of intake for white grapefruit was 0.5 (95% CI = 0.2-0.9) (P for trend =.02). No association was found for important food sources of other flavonoids. Using published food-composition data for flavonoids, we found an inverse association between intake of quercetin and risk of lung cancer (P for trend =.07) that appears consistent with associations for its food sources. The effect of onions was particularly strong against squamous cell carcinoma (a cell type specifically associated with CYP1A1 * 2 in our study) and was modified by the CYP1A1 genotype, suggesting that CYP1A1 may play a role in this association. Conclusion: If replicated, particularly in prospective studies, these findings would suggest that foods rich in certain flavonoids may protect against certain forms of lung cancer and that decreased bioactivation of carcinogens by inhibition of CYP1A1 should be explored as underlying mechanisms.
Article
To determine whether flavonoid intake explains differences in mortality rates from chronic diseases between populations. Cross-cultural correlation study. Sixteen cohorts of the Seven Countries Study in whom flavonoid intake at baseline around 1960 was estimated by flavonoid analysis of equivalent food composites that represented the average diet in the cohorts. Mortality from coronary heart disease, cancer (various sites), and all causes in the 16 cohorts after 25 years of follow-up. Average intake of antioxidant flavonoids was inversely associated with mortality from coronary heart disease and explained about 25% of the variance in coronary heart disease rates in the 16 cohorts. In multivariate analysis, intake of saturated fat (73%; P = 0.0001), flavonoid intake (8%, P = .01), and percentage of smokers per cohort (9%; P = .03) explained together, independent of intake of alcohol and antioxidant vitamins, 90% of the variance in coronary heart disease rates. Flavonoid intake was not independently associated with mortality from other causes. Average flavonoid intake may partly contribute to differences in coronary heart disease mortality across populations, but it does not seem to be an important determinant of cancer mortality.
Article
In most countries, high intake of saturated fat is positively related to high mortality from coronary heart disease (CHD). However, the situation in France is paradoxical in that there is high intake of saturated fat but low mortality from CHD. This paradox may be attributable in part to high wine consumption. Epidemiological studies indicate that consumption of alcohol at the level of intake in France (20-30 g per day) can reduce risk of CHD by at least 40%. Alcohol is believed to protect from CHD by preventing atherosclerosis through the action of high-density-lipoprotein cholesterol, but serum concentrations of this factor are no higher in France than in other countries. Re-examination of previous results suggests that, in the main, moderate alcohol intake does not prevent CHD through an effect on atherosclerosis, but rather through a haemostatic mechanism. Data from Caerphilly, Wales, show that platelet aggregation, which is related to CHD, is inhibited significantly by alcohol at levels of intake associated with reduced risk of CHD. Inhibition of platelet reactivity by wine (alcohol) may be one explanation for protection from CHD in France, since pilot studies have shown that platelet reactivity is lower in France than in Scotland.
Article
We investigated whether calmodulin mediates the stimulating effect of Ca2+ on nitric oxide synthase in the cytosol of porcine aortic endothelial cells. Nitric oxide was quantified by activation of a purified soluble guanylate cyclase. The Ca2(+)-sensitivity of nitric oxide synthase was lost after anion exchange chromatography of the endothelial cytosol and could only be reconstituted by addition of calmodulin or heat-denatured endothelial cytosol. The Ca2(+)-dependent activation of nitric oxide synthase in the cytosol was inhibited by the calmodulin-binding peptides/proteins melittin, mastoparan, and calcineurin (IC50 450, 350 and 60 nM, respectively), but not by the calmodulin antagonist, calmidazolium. In contrast, Ca2(+)-calmodulin-reconstituted nitric oxide synthase was inhibited with similar potency by melittin and calmidazolium. The results suggest that the Ca2(+)-dependent activation of nitric oxide synthase in endothelial cells is mediated by calmodulin.
Article
The objective of this study was to determine whether nitric oxide (NO) is responsible for the vascular smooth muscle relaxation elicited by endothelium-derived relaxing factor (EDRF). EDRF is an unstable humoral substance released from artery and vein that mediates the action of endothelium-dependent vasodilators. NO is an unstable endothelium-independent vasodilator that is released from vasodilator drugs such as nitroprusside and glyceryl trinitrate. We have repeatedly observed that the actions of NO on vascular smooth muscle closely resemble those of EDRF. In the present study the vascular effects of EDRF released from perfused bovine intrapulmonary artery and vein were compared with the effects of NO delivered by superfusion over endothelium-denuded arterial and venous strips arranged in a cascade. EDRF was indistinguishable from NO in that both were labile (t1/2 = 3-5 sec), inactivated by pyrogallol or superoxide anion, stabilized by superoxide dismutase, and inhibited by oxyhemoglobin or potassium. Both EDRF and NO produced comparable increases in cyclic GMP accumulation in artery and vein, and this cyclic GMP accumulation was inhibited by pyrogallol, oxyhemoglobin, potassium, and methylene blue. EDRF was identified chemically as NO, or a labile nitroso species, by two procedures. First, like NO, EDRF released from freshly isolated aortic endothelial cells reacted with hemoglobin to yield nitrosylhemoglobin. Second, EDRF and NO each similarly promoted the diazotization of sulfanilic acid and yielded the same reaction product after coupling with N-(1-naphthyl)-ethylenediamine. Thus, EDRF released from artery and vein possesses identical biological and chemical properties as NO.
Article
In the present review, attention will be focused on the biochemical and pharmacological characteristics of the agonist-stimulated breakdown of PPI, polyphosphoinositides (PPI response), properties of the enzymes involved in phosphoinositide metabolism, some general properties of Ca2+-mobilizing receptors which are coupled to PPI turnover, and finally on the pharmacological and physiological significance of the phosphoinositide-derived second messenger molecules, namely IP3, myo-inositol 1,4,5-trisphosphate, DG, 1,2-diacylglycerol, and AA, arachidonic acid in cellular functions. Several reviews have recently appeared on various aspects of this topic and papers presented at two international meetings are also an excellent source of detailed studies of various systems during the last decade.
Article
To study the association between dietary intake of flavonoids and subsequent coronary mortality. A cohort study based on data collected at the Finnish mobile clinic health examination survey from 1967-72 and followed up until 1992. 30 communities from different parts of Finland. 5133 Finnish men and women aged 30-69 years and free from heart disease at baseline. Dietary intake of flavonoids, total mortality, and coronary mortality. In women a significant inverse gradient was observed between dietary intake of flavonoids and total and coronary mortality. The relative risks between highest and lowest quarters of flavonoid intake adjusted for age, smoking, serum cholesterol concentration, blood pressure, and body mass index were 0.69 (95% confidence interval 0.53 to 0.90) and 0.54 (0.33 to 0.87) for total and coronary mortality, respectively. The corresponding values for men were 0.76 (0.63 to 0.93) and 0.78 (0.56 to 1.08), respectively. Adjustment for intake of antioxidant vitamins and fatty acids weakened the associations for women; the relative risks for coronary heart disease were 0.73 (0.41 to 1.32) and 0.67 (0.44 to 1.00) in women and men, respectively. Intakes of onions and apples, the main dietary sources of flavonoids, presented similar associations. The relative risks for coronary mortality between highest and lowest quarters of apple intake were 0.57 (0.36 to 0.91) and 0.81 (0.61 to 1.09) for women and men, respectively. The corresponding values for onions were 0.50 (0.30 to 0.82) and 0.74 (0.53 to 1.02), respectively. The results suggest that people with very low intakes of flavonoids have higher risks of coronary disease.
Article
Epidemiological studies suggested that consumption of fruit and vegetables may protect against stroke. The hypothesis that dietary antioxidant vitamins and flavonoids account for this observation is investigated in a prospective study. A cohort of 552 men aged 50 to 69 years was examined in 1970 and followed up for 15 years. Mean nutrient and food intake was calculated from cross-check dietary histories taken in 1960, 1965, and 1970. The association between antioxidants, selected foods, and stroke incidence was assessed by Cox proportional hazards regression analysis. Adjustment was made for confounding by age, systolic blood pressure, serum cholesterol, cigarette smoking, energy intake, and consumption of fish and alcohol. Forty-two cases of first fatal or nonfatal stroke were documented. Dietary flavonoids (mainly quercetin) were inversely associated with stroke incidence after adjustment for potential confounders, including antioxidant vitamins. The relative risk (RR) of the highest vs the lowest quartile of flavonoid intake ( > or = 28.6 mg/d vs <18.3 mg/d) was 0.27 (95% confidence interval [CI], 0.11 to 0.70). A lower stroke risk was also observed for the highest quartile of beta-carotene intake (RR, 0.54; 95% CI, 0.22 to 1.33). The intake of vitamin C and vitamin E was not associated with stroke risk. Black tea contributed about 70% to flavonoid intake. The RR for a daily consumption of 4.7 cups or more of tea vs less than 2.6 cups of tea was 0.31 (95% CI, 0.12 to 0.84). The habitual intake of flavonoids and their major source (tea) may protect against stroke.
Article
Because the vascular endothelium is exposed to oxidant stress resulting from ischemia/reperfusion and from the products of polymorphonuclear leukocytes or monocytes, studies were performed to examine the effect of hydrogen peroxide (1 micromol/L to 10 mmol/L) on endothelial Ca2+ signaling. At low concentrations (1 to 10 micromol/L), hydrogen peroxide did not affect intracellular Ca2+ concentration in subconfluent, indo 1-loaded human aortic endothelial monolayers. At a concentration of 100 micromol/L hydrogen peroxide, intracellular free Ca2+ gradually increased from 125.3+/-6.8 to 286.3+/-19.9 nmol/L over 4.2+/-0.9 minutes before repetitive Ca2+ oscillations were observed, consisting of an initial large, transient spike of approximately 1 micromol/L followed by several spikes of decreasing amplitudes at a frequency of 0.7+/-0.1 min-1 over 12.0+/-1.1 minutes. After these oscillations, intracellular Ca2+ reached a plateau of 543.4+/-64.0 nmol/L, which was maintained above baseline levels for >5 minutes and then partially reversible on washout of hydrogen peroxide in most monolayers. Intracellular Ca2+ oscillations were typically observed when monolayers were exposed to 100 to 500 micromol/L hydrogen peroxide. Higher concentrations of hydrogen peroxide (1 and 10 mmol/L) increased intracellular Ca2+ but only rarely (2 of 6 monolayers at 1 mmol/L) or never (at 10 mmol/L) stimulated intracellular Ca2+ oscillations. Removal of Ca2+ from the buffer either before hydrogen peroxide stimulation or during an established response did not block intracellular Ca2+ oscillations in response to 100 micromol/L hydrogen peroxide, but prior depletion of an intracellular Ca2+ store with either caffeine, histamine, or thapsigargin abolished Ca2+ oscillations. Hydrogen peroxide induces concentration-dependent intracellular Ca2+ oscillations in human endothelial cells, which results from release of an endoplasmic reticulum Ca2+ store. Because oxidant production appears to occur in the micromolar range in the postischemic/anoxic endothelium and is associated with impaired endothelium-dependent relaxation, the effects of micromolar concentrations of hydrogen peroxide on endothelial Ca2+ signaling described in the present study may be important in the pathogenesis of postischemic endothelial dysfunction.
Article
Thapsigargin is the most widely used inhibitor of the ubiquitous sarco-endoplasmic reticulum Ca(2+)-ATPases in mammalian cells. Over the past ten years, this guaianolide compound of plant origin has become a popular tool in a host of studies directed at elucidating the mechanisms of intracellular Ca2+ signalling. Its remarkable potency and selectivity have been instrumental in widening our view of the function of intracellular Ca2+ stores to include such key aspects as store-operated Ca2+ entry or the involvement of the stores in protein synthesis or cell growth. In this article Marek Treiman, Casper Caspersen and Søren Brøgger Christensen review the key pharmacological features of thapsigargin action; they also discuss some of the ways in which its unique properties have shown to be important for obtaining new insights into the biology of Ca2+ stores, and how these properties might encompass a therapeutic potential. In parallel, attention is drawn to some of the limitations and pitfalls encountered when working with thapsigargin.
Article
The endothelium controls the tone of the underlying vascular smooth muscle mainly through the production of vasodilator mediators. In some cases, this function is hampered by the release of constrictor substances. The endothelial mediators are also involved in the regulation by the endothelium of vascular architecture and the blood cell-vascular wall interactions. The endothelium-derived factors comprise nitric oxide (NO), prostacyclin, and a still unknown endothelium-derived hyperpolarizing factor(s) (EDHF). In most vascular diseases, the vasodilator function of the endothelium is attenuated. In advanced atherosclerotic lesions, endothelium-dependent vasodilatation may even be abolished. Various degrees and forms of endothelial dysfunction exist, including (1) the impairment of Galphai proteins, (2) less release of NO, prostacyclin and/or EDHF, (3) increased release of endoperoxides, (4) increased production of reactive oxygen species, (5) increased generation of endothelin-1, and (6) decreased sensitivity of the vascular smooth muscle to NO, prostacyclin and/or EDHF. The levels of bradykinin and angiotensin II within the vascular wall are controlled by angiotensin-converting enzyme (ACE). ACE degrades bradykinin and generates angiotensin II. Bradykinin stimulates endothelial cells to release vasodilators. The actions of the kinin are maintained despite endothelial dysfunction, except in very severe arterial lesions. Angiotensin II may be in part responsible for endothelial dysfunction because it induces resistance to the vasodilator action of NO. Thus, impairment of the generation of angiotensin II blocks the direct and indirect vasoconstrictor effect of the peptide. By potentiating bradykinin, ACE inhibitors promote the release of relaxing vasodilator mediators to restore vasodilator function, and to prevent platelet aggregation as well as the recruitment of leukocytes to the vascular wall.
Article
To investigate the possible relationship between intake of flavonoids-powerful dietary antioxidants that may also inhibit P450 enzymes-and lung cancer risk, we conducted a population-based, case-control study in Hawaii. An in-person interview assessed smoking history and usual intake of 242 food items for 582 patients with incident lung cancer and 582 age-, sex-, and ethnicity-matched control subjects. Subjects who donated a blood sample were genotyped for the P450 enzyme variant allele CYP1A1*2 by use of a polymerase chain reaction-based method. Logistic regression analysis was used to compute odds ratios (ORs) and 95% confidence intervals (CIs). All P values are two-sided. After adjusting for smoking and intakes of saturated fat and beta-carotene, we found statistically significant inverse associations between lung cancer risk and the main food sources of the flavonoids quercetin (onions and apples) and naringin (white grapefruit). The lung cancer OR for the highest compared with the lowest quartile of intake was 0.5 (95% CI = 0.3-0.9) for onions (P for trend =.001) and 0.6 (95% CI = 0.4-1.0) for apples (P for trend =.03). The OR for the highest compared with the lowest tertile of intake for white grapefruit was 0.5 (95% CI = 0.2-0.9) (P for trend =.02). No association was found for important food sources of other flavonoids. Using published food-composition data for flavonoids, we found an inverse association between intake of quercetin and risk of lung cancer (P for trend =.07) that appears consistent with associations for its food sources. The effect of onions was particularly strong against squamous cell carcinoma (a cell type specifically associated with CYP1A1*2 in our study) and was modified by the CYP1A1 genotype, suggesting that CYP1A1 may play a role in this association. If replicated, particularly in prospective studies, these findings would suggest that foods rich in certain flavonoids may protect against certain forms of lung cancer and that decreased bioactivation of carcinogens by inhibition of CYP1A1 should be explored as underlying mechanisms.
Article
The relationship among antioxidant activity, based on the electron-spin resonance determination of the reduction of Fremy's radical, vasodilation activity, and phenolic content was investigated in 16 red wines. The wines were selected to provide a range of origins, grape varieties, and vinification methods. Sensitive and selective HPLC methods were used for the analysis of the major phenolics in red wine: free and conjugated myricetin, quercetin, kaempferol, and isorhamnetin; (+)-catechin, (-)-epicatechin, gallic acid, p-coumaric acid, caffeic acid, caftaric acid, trans-resveratrol, cis-resveratrol, and trans-resveratrol glucoside. Total anthocyanins were measured using a colorimetric assay. The total phenolic content of the wines was determined according to the Folin-Ciocalteu colorimetric assay and also by the cumulative measurements obtained by HPLC. The 16 wines exhibited a wide range in the values of all parameters investigated. However, the total phenol contents, measured both by HPLC and colorimetrically, correlated very strongly with the antioxidant activity and vasodilation activity. In addition, the antioxidant activity was associated with gallic acid, total resveratrol, and total catechin. In contrast, only the total anthocyanins were correlated with vasodilation activity. The results demonstrate that the different phenolic profiles of wines can produce varying antioxidant and vasodilatant activities, which opens up the possibility that some red wines may provide enhanced health benefits for the consumer.
Article
Vascular endothelial cells are ubiquitous for their presence in each and every vessel and unique for their multifunctional nature. A large number of endothelial functions depend to various extents on changes in intracellular Ca(2+) concentration. Reviewed are endothelial Ca(2+) stores, Ca(2+) channels, and in-out-in Ca(2+) signalling events, from ligand-binding on the plasma membrane into depletion of intracellular Ca(2+) stores and therefrom out to transplasmalemmal Ca(2+) entry that is of prime importance for many endothelial functions. Special emphasis is placed on mechanisms regulating store-operated Ca(2+) entry including a Ca(2+) influx factor, the vesicle secretion-like model, the conformational coupling model, the membrane potential, cytochrome P450, protein tyrosine kinase, myosin light chain kinase and nitric oxide.
Article
Activation of the protein kinase Akt/PKB mediates VEGF-dependent endothelial cell survival and eNOS activation. Here we examined the role of PKC in mediating VEGF-induced Akt activation. The PKC inhibitors GF109203X and calphostin C inhibited VEGF-induced Akt activation. Rottlerin and Go6976, inhibitors with specificities for PKC delta and alpha, respectively, also strongly inhibited VEGF-induced Akt activation. VEGF-induced Akt activation was prevented by down-regulation of PKC induced by prolonged pretreatment with the phorbol ester, PMA. VEGF induced phosphorylation of PKC delta at Thr 505 in the activation loop, and this phosphorylation was inhibited by LY294002, suggesting that modulation of PKC delta activation by VEGF occurs distal to phosphatidylinositol 3'-kinase. PKC and PI3K inhibitors both strongly reduced the stimulation of branching tubulogenesis by VEGF in vitro. The finding that PKC mediates VEGF-induced Akt activation identifies a novel signal transduction pathway through which Akt can be regulated by growth factors acting through receptor protein tyrosine kinases, and indicates that PKC-mediated Akt activity may play an essential role in VEGF-stimulated angiogenesis.
Article
Endothelial cells synthesize and release vasoactive mediators in response to various neurohumoural substances (e.g. bradykinin or acetylcholine) and physical stimuli (e.g. cyclic stretch or fluid shear stress). The best-characterized endothelium-derived relaxing factors are nitric oxide and prostacyclin. However, an additional relaxant pathway associated with smooth muscle hyperpolarization also exists. This hyperpolarization was originally attributed to the release of an endothelium-derived hyperpolarizing factor (EDHF) that diffuses to and activates smooth muscle K(+) channels. More recent evidence suggests that endothelial cell receptor activation by these neurohumoural substances opens endothelial cell K(+) channels. Several mechanisms have been proposed to link this pivotal step to the subsequent smooth muscle hyperpolarization. The main concepts are considered in detail in this review.
Article
Many individuals with diabetes experience impaired cardiac contractility that cannot be explained by hypertension and atherosclerosis. This cardiomyopathy may be due to either organ-based damage, such as fibrosis, or to direct damage to cardiomyocytes. Reactive oxygen species (ROS) have been proposed to contribute to such damage. To address these hypotheses, we examined contractility, Ca(2+) handling, and ROS levels in individual cardiomyocytes isolated from control hearts, diabetic OVE26 hearts, and diabetic hearts overexpressing antioxidant protein metallothionein (MT). Our data showed that diabetic myocytes exhibited significantly reduced peak shortening, prolonged duration of shortening/relengthening, and decreased maximal velocities of shortening/relengthening as well as slowed intracellular Ca(2+) decay compared with control myocytes. Overexpressing MT prevented these defects induced by diabetes. In addition, high glucose and angiotensin II promoted significantly increased generation of ROS in diabetic cardiomyocytes. Chronic overexpression of MT or acute in vitro treatment with the flavoprotein inhibitor diphenyleneiodonium or the angiotensin II type I receptor antagonist losartan eliminated excess ROS production in diabetic cardiomyocytes. These data show that diabetes induces damage at the level of individual myocyte. Damage can be attributed to ROS production, and diabetes increases ROS production via angiotensin II and flavoprotein enzyme-dependent pathways.
Article
In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.
Article
The literature suggests that the physiological functions for which mitochondria sequester Ca(2+) are (1). to stimulate and control the rate of oxidative phosphorylation, (2). to induce the mitochondrial permeability transition (MPT) and perhaps apoptotic cell death, and (3). to modify the shape of cytosolic Ca(2+) pulses or transients. There is strong evidence that intramitochondrial Ca(2+) controls both the rate of ATP production by oxidative phosphorylation and induction of the MPT. Since the results of these processes are so divergent, the signals inducing them must not be ambiguous. Furthermore, as pointed out by Balaban [J. Mol. Cell. Cardiol. 34 (2002 ) 11259-11271], for any repetitive physiological process dependent on intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)), a kind of intramitochondrial homeostasis must exist so that Ca(2+) influx during the pulse is matched by Ca(2+) efflux during the period between pulses to avoid either Ca(2+) buildup or depletion. In addition, mitochondrial Ca(2+) transport modifies both spatial and temporal aspects of cytosolic Ca(2+) signaling. Here, we look at the amounts of Ca(2+) necessary to mediate the functions of mitochondrial Ca(2+) transport and at the mechanisms of transport themselves in order to set up a hypothesis about how the mechanisms carry out their roles. The emphasis here is on isolated mitochondria and on general mitochondrial properties in order to focus on how mitochondria alone may function to fulfill their physiological roles even though the interactions of mitochondria with other organelles, particularly with endoplasmic and sarcoplasmic reticulum [Sci. STKE re1 (2004) 1-9], may also influence this story.
Article
Moderate consumption of red wine has been putatively associated with lowering the risk of developing coronary heart disease. This beneficial effect is mainly attributed to the occurrence of polyphenol compounds such as anthocyanosides (ACs), catechins, proanthocyanidins (PAs), stilbenes and other phenolics in red wine. This review focuses on the vascular effects of red wine polyphenols (RWPs), with emphasis on anthocyanosides and proanthocyanidins. From in vitro studies, the effect of red wine polyphenols on the vascular tone is thought to be due to short- and long-term mechanisms. NO-mediated vasorelaxation represents the short-term response to wine polyphenols, which exert the effect by increasing the influx of extracellular Ca(2+), and the mobilization of intracellular Ca(2+) in endothelial cells. Polyphenolic compounds may also have long-term properties, as they increase endothelial NO synthase expression acting on the promoter activity. In addition, they decrease the expression of adhesion molecules and growth factors, involved in migration and proliferation of vascular smooth muscle cells. Moreover, they inhibit platelet aggregation. However, a paucity of data as regards the bioavailability and metabolism of these compounds in human studies is a limiting factor to proving their efficacy in vivo.
Article
The mitochondrion is at the core of cellular energy metabolism, being the site of most ATP generation. Calcium is a key regulator of mitochondrial function and acts at several levels within the organelle to stimulate ATP synthesis. However, the dysregulation of mitochondrial Ca(2+) homeostasis is now recognized to play a key role in several pathologies. For example, mitochondrial matrix Ca(2+) overload can lead to enhanced generation of reactive oxygen species, triggering of the permeability transition pore, and cytochrome c release, leading to apoptosis. Despite progress regarding the independent roles of both Ca(2+) and mitochondrial dysfunction in disease, the molecular mechanisms by which Ca(2+) can elicit mitochondrial dysfunction remain elusive. This review highlights the delicate balance between the positive and negative effects of Ca(2+) and the signaling events that perturb this balance. Overall, a "two-hit" hypothesis is developed, in which Ca(2+) plus another pathological stimulus can bring about mitochondrial dysfunction.
Article
Adenosine and nitric oxide (NO) are important local mediators of vasodilatation. The aim of this study was to elucidate the mechanisms underlying adenosine receptor-mediated NO release from the endothelium. In studies on freshly excised rat aorta, second-messenger systems were pharmacologically modulated by appropriate antagonists while a NO-sensitive electrode was used to measure adenosine-evoked NO release from the endothelium. We showed that A1-mediated NO release requires extracellular Ca2+, phospholipase A2 (PLA2) and ATP-sensitive K+ (KATP) channel activation whereas A2A-mediated NO release requires extracellular Ca2+ and Ca2+-activated K+ (KCa) channels. Since our previous study showed that A1- and A2A-receptor-mediated NO release requires activation of adenylate cyclase (AC), we propose the following novel pathways. The K+ efflux resulting from A1-receptor-coupled KATP-channel activation facilitates Ca2+ influx which may cause some stimulation of endothelial NO synthase (eNOS). However, the increase in [Ca2+]i also stimulates PLA2 to liberate arachidonic acid and stimulate cyclooxygenase to generate prostacyclin (PGI2). PGI2 acts on its endothelial receptors to increase cAMP, so activating protein kinase A (PKA) to phosphorylate and activate eNOS resulting in NO release. By contrast, the K+ efflux resulting from A2A-coupled KCa channels facilitates Ca2+ influx, thereby activating eNOS and NO release. This process may be facilitated by phosphorylation of eNOS by PKA via the action of A2A-receptor-mediated stimulation of AC increasing cAMP. These pathways may be important in mediating vasodilatation during exercise and systemic hypoxia when adenosine acting in an endothelium- and NO-dependent manner has been shown to be important.
Article
The increased resistance of the glomerulus as a result of contractile dysfunction of mesangial cells (MCs) is associated with reduction of glomerular filtration rate and development of glomerulosclerosis. Evidences show MCs contraction changes with intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, we explore the mechanism of angiotensin II (AngII)-induced Ca(2+) oscillations and MCs contraction. Primary MCs from 3-month-old and 28-month-old rats were used for detection of Ca(2+) oscillations and MC planar area with confocal microscopy. AngII could induce typical Ca(2+) oscillations and contraction of MCs. This process was abolished by thapsigargin, 2-aminoethoxydiphenyl borate, or 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine, and partially inhibited by ryanodine, but could not be inhibited in the absence of extracellular Ca(2+). Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate (InsP(3)) receptors displayed a strong colocalization, which may contribute to the amplification of Ca(2+) response. MLC(20) phosphorylation and MC planar area were associated with AngII-induced Ca(2+) oscillations. The frequency of Ca(2+) oscillations was dependent on the AngII concentration and correlated with the MCs' contractive extent, which could be attenuated by KN-93. The amplitude reduction of oscillations correlated with the decrease in aging-related contraction. In conclusion, [Ca(2+)](i) response of MCs to AngII is characterized by repetitive spikes through the following repetitive cycles: Ca(2+) release by phospholipase C -InsP(3) pathway, Ca(2+) amplification by Ca(2+)-activated RyRs and Ca(2+) reuptake by the endoplasmic reticulum. MCs contraction can be modulated by oscillations not only in an AngII-induced frequency-dependent mode but also in an aging-related, amplitude-dependent mode.
Article
The interaction of advanced glycation end products (AGE) with their cell surface receptors for AGEs (RAGE) has been causally implicated in the pathogenesis of diabetic vascular complications and has been shown to stimulate cell adhesion molecule expression in endothelial cells via induction of reactive oxygen species (ROS). Alternatively, grape seed proanthocyanidin extracts (GSPE), which are naturally occurring polyphenolic compounds, have been reported to possess potent radical scavenging and antioxidant properties and to display significant cardiovascular protective action. In this study, we investigated whether GSPE could inhibit AGE-induced cell adhesion molecule expression through interference with ROS generations in human umbilical vein endothelial cells. AGE-modified bovine serum albumin (AGE-BSA) was prepared by incubating BSA with a high concentration of glucose. Stimulation of cultured human umbilical vein endothelial cells with 200 microg/mL of AGE-BSA significantly enhanced intracellular ROS formation and subsequently upregulated the expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM-1), whereas both unmodified BSA and GSPE alone were without effect. However, preincubation of different concentrations of GSPE markedly downregulated AGE-BSA-induced VCAM-1 expression at the surface protein and mRNA level in a concentration-dependent manner, but the increased ICAM-1 expression was not affected by GSPE treatment. Meanwhile, the inhibition by GSPE of intracellular ROS generation was also observed at defined time periods. These results demonstrate that GSPE can inhibit the enhanced VCAM-1 expression but not ICAM-1 in AGE-exposed endothelial cells by suppressing ROS generation. Hence, GSPE may have therapeutic potential in the prevention and treatment of vascular complications in patients with diabetes.
Article
An enhanced endothelial formation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), is thought to contribute to the protective effect of moderate consumption of red wine on coronary diseases. The present study has characterized endothelium-dependent relaxations to Concord grape juice (CGJ), a non-alcoholic rich source of grape-derived polyphenols, in the coronary artery. Porcine coronary artery rings were suspended in organ chambers for the measurement of changes in isometric tension in the presence of indomethacin. NO formation was assessed by electron spin resonance spectroscopy, and the phosphorylation of Src, Akt and endothelial NO synthase (eNOS) by Western blot analysis in cultured endothelial cells. Endothelium-dependent relaxations to CGJ were slightly but significantly reduced by L-NA, not affected by charybdotoxin (CTX) plus apamin (APA, two inhibitors of EDHF-mediated responses) whereas the combination of L-NA, CTX plus APA reduced maximal relaxation to about 50%. In the presence of CTX plus APA, relaxations to CGJ were markedly reduced by the membrane permeant mimetic of superoxide dismutase (SOD), MnTMPyP, the membrane permeant analogue of catalase polyethyleneglycol-catalase (PEG-catalase), PP2, an inhibitor of Src kinase, and by wortmannin, an inhibitor of the PI3-kinase. CGJ stimulated the formation of reactive oxygen species and the N(omega)-nitro-L-arginine-, PP2- and wortmannin-sensitive formation of NO in endothelial cells. The formation of NO was associated with a redox-sensitive and time-dependent phosphorylation of Src, Akt and eNOS. CGJ induces endothelium-dependent relaxations of coronary arteries, which involve a NO-mediated component and also, to a minor extent, an EDHF-mediated component. In addition, CGJ-induced NO formation is due to the redox-sensitive activation of Src kinase with the subsequent PI3-kinase/Akt-dependent phosphorylation of eNOS.
Article
The peroxynitrite scavenging ability of Procyanidins from Vitis vinifera L. seeds was studied in homogeneous solution and in human umbilical endothelial cells (EA.hy926 cell line) using 3-morpholinosydnonimine (SIN-1) as peroxynitrite generator. In homogeneous phase procyanidins dose-dependently inhibited 2′,7′-dichloro-dihydrofluorescein (DCFH) oxidation induced by SIN-1 with an IC50 value of 0.28 μM. When endothelial cells (EC) were exposed to 5 mM SIN-1, marked morphological alterations indicating a necrotic cell death (cell viability reduced to 16 ± 2.5%) were observed. Cell damage was suppressed by procyanidins, with a minimal effective concentration of 1 μM (cell morphology and integrity completely recovered at 20 μM). Cellular localization of procyanidins in EC was confirmed using a new staining procedure and site-specific peroxyl radical inducers: AAPH and cumene hydroperoxide (CuOOH). Endothelial cells (EC) pre-incubated with procyanidins (20 μM) and exposed to FeCl3/K3Fe(CN)6 showed a characteristic blue staining, index of a site-specific binding of procyanidins to EC. Procyanidins dose-dependently inhibit the AAPH induced lipid oxidation and reverse the consequent loss of cell viability, but were ineffective when oxidation was driven at intracellular level (CuOOH). This demonstrates that the protective effect is due to their specific binding to the outer surface of EC thus to quench exogenous harmful radicals.
Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands
  • Hertog Mg
  • Hollman Pc
  • Katan Mb
  • Kromhout
Hertog MG, Hollman PC, Katan MB, Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 1993;20:21–9.
Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands
  • Hertog
A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases
  • Treiman