Enteric glia modulate epithelial cell proliferation and differentiation through 15‐deoxy‐Δ12,14‐prostaglandin J2

INSERM U913 and Institut des Maladies de l'Appareil Digestif, 1, place Alexis Ricordeau, 44093 Nantes Cedex 01, France.
The Journal of Physiology (Impact Factor: 5.04). 07/2010; 588(Pt 14):2533-44. DOI: 10.1113/jphysiol.2010.188409
Source: PubMed


The enteric nervous system (ENS) and its major component, enteric glial cells (EGCs), have recently been identified as a major regulator of intestinal epithelial barrier functions. Indeed, EGCs inhibit intestinal epithelial cell (IEC) proliferation and increase barrier resistance and IEC adhesion via the release of EGC-derived soluble factors. Interestingly, EGC regulation of intestinal epithelial barrier functions is reminiscent of previously reported peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent functional effects. In this context, the present study aimed at identifying whether EGC could synthesize and release the main PPARgamma ligand, 15-deoxy-(12,14)-prostaglandin J2 (15dPGJ2), and regulate IEC functions such as proliferation and differentiation via a PPARgamma dependent pathway. First, we demonstrated that the lipocalin but not the haematopoetic form for prostaglandin D synthase (PGDS), the enzyme responsible of 15dPGJ2 synthesis, was expressed in EGCs of the human submucosal plexus and of the subepithelium, as well as in rat primary culture of ENS and EGC lines. Next, 15dPGJ2 was identified in EGC supernatants of various EGC lines. 15dPGJ2 reproduced EGC inhibitory effects upon IEC proliferation, and inhibition of lipocalin PGDS expression by shRNA abrogated these effects. Furthermore, EGCs induced nuclear translocation of PPARgamma in IEC, and both EGC and 15dPGJ2 effects upon IEC proliferation were prevented by the PPARgamma antagonist GW9662. Finally, EGC induced differentiation-related gene expression in IEC through a PPARgamma-dependent pathway. Our results identified 15dPGJ2 as a novel glial-derived mediator involved in the control of IEC proliferation/differentiation through activation of PPARgamma. They also suggest that alterations of glial PGDS expression may modify intestinal epithelial barrier functions and be involved in the development of pathologies such as cancer or inflammatory bowel diseases.

Download full-text


Available from: Damien Masson
  • Source
    • "Targeted-ablation of GFAP-positive enteric glia in the small intestine causes a fulminant and fatal inflammation of the bowel. Since then, enteric glia have been shown to modulate intestinal epithelial proliferation [51], determine enteric neuron phenotypes [30], and give rise to enteric neurons in response to injury [31]. Likewise, it is possible that enteric glia modulate enteroendocrine cell function in a similar fashion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY - both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia - the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.
    Full-text · Article · Feb 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunohistochemical examinations of the enteric nervous system (ENS) were performed on biopsies of healthy cats and compared to findings in cats suffering from inflammatory bowel disease or intestinal lymphoma. In lymphocytic-plasmacytic enterocolitis all affected samples had significant reductions in glial fibrillary acidic protein and vasoactive intestinal peptide (VIP) and mostly of neuron-specific enolase (NSE) possibly reflecting alterations in enteric glial cells and neurons. In cases with eosinophilic gastroenterocolitis significantly reduced phosphorylated neurofilament (PN) expression was present suggesting a disturbance in neuronal cytoskeleton, whereas cats with fibrosing enteropathy had reduced expression of NSE, non-phosphorylated neurofilaments (NPN), PN and VIP, possibly reflecting neuronal disturbances. In cases with intestinal lymphoma only the reduction in PN and the increase in NPN were obvious suggesting direct damage or interference of neoplastic cells with enteric neurons. In conclusion, structural and functional alterations of the ENS may contribute to clinically evident signs of vomiting and/or diarrhea.
    No preview · Article · Feb 2011 · Research in Veterinary Science

  • No preview · Article · Mar 2011 · Gut
Show more