Cellular Effects of Helium in Different Organs

Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
Anesthesiology (Impact Factor: 5.88). 06/2010; 112(6):1503-10. DOI: 10.1097/ALN.0b013e3181d9cb5e
Source: PubMed


Experimental research in cardiac and neuronal tissue has shown that besides volatile anesthetics and xenon, the nonanesthetic noble gas helium also reduces ischemia-reperfusion damage. Even though the distinct mechanisms of helium-induced organ protection are not completely unraveled, several signaling pathways have been identified. Beside the protective effects on heart and brain that are mainly obtained by different pre- and postconditioning protocols, helium also exerts effects in the lungs, the immune system, and the blood vessels. Obviously, this noble gas is biochemically not inert and exerts biologic effects, although until today the question remains open on how these changes are mediated. Because of its favorable characteristics and the lack of hemodynamic side effects, helium is suitable for use also in critically ill patients. This review covers the cellular effects of helium, which may lead to new clinical strategies of tissue salvage in ischemia-reperfusion situations, both within and outside the perioperative setting.

Download full-text


Available from: Nina C Weber
  • Source
    • "These organs can be protected against I/R injury by subjecting them to several short helium episodes according to a specific protocol, known as helium preconditioning (HPC) [4–10,13]. However, the specific mechanisms and signaling pathways responsible for HPC-induced protections remain poorly understood [14]. The phosphatidylinositol-3-kinase PI3K/Akt pathway is a survival pathway, involved in protection against various stressors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background & aims: Hepatic ischemia and reperfusion (I/R) injury is a major complication of liver transplantation, hepatic resection and trauma. Helium preconditioning (HPC) exerts protection against ischemic stress. We investigated potential beneficial effects of HPC on I/R-induced liver injury and investigated mechanisms underlying HPC-induced protection. Methods: We employed a model of segmental warm hepatic I/R on BALB/c mice. Serum ALT was measured and livers were analysed by histology, RT-PCR and western blot. HPC was induced by inhalation of a 70% helium/30% oxygen mixture for three 5-min periods, interspersed with three 5-min washout periods by room air. We tested which component of HPC (the helium/air mixture inhalation, the air room gap, or the interaction between these two factors) is protective. Results: We found that HPC caused a significant increase in Akt phosphorylation in hepatocytes. The HPC-induced Akt phosphorylation resulted in decreased hepatocellular injury and improved survival rate of the treated animals. PI3K inhibitors abolished HPC induced effects. HPC-induced Akt phosphorylation affected expression of its downstream molecules. The effects of HPC on the PI3K/Akt pathway were attenuated by adenosine A2A receptor blockade, but could be re-established by PTEN inhibition. We demonstrated that the interaction of helium/air breathing and air gaps is responsible for the observed effects of HPC. Conclusions: HPC may be a promising strategy leading to a decrease in I/R induced liver injury in clinical settings. Additionally, the PI3K/Akt pathway plays an essential role in the protective effects of HPC in hepatic I/R injury.
    Full-text · Article · Jun 2014 · Journal of Hepatology
  • Source
    • "Taken together, we conclude that in this relevant VILI model, heliox does not have anti-inflammatory properties. In line with this, heliox did not alter immune response of healthy volunteers stimulated ex vivo with various bacterial stimuli [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2) diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator-induced lung injury. Sprague-Dawley rats (N=8 per group) were mechanically ventilated with heliox (50% oxygen; 50% helium). Controls received a standard gas mixture (50% oxygen; 50% air). VILI was induced by application of tidal volumes of 15 mL kg(-1); lung protective ventilated animals were ventilated with 6 mL kg(-1). Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF) was obtained. Data are mean (SD). VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324) vs. 290 (181) μg mL(-1); p<0.05) and IL-6 levels (640 (8.7) vs. 206 (8.7) pg mL(-1); p<0.05), whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123±0.6 vs. 146±8.9 mL min(-1), P<0.001), due to a decrease in respiratory rate (22 (0.4) vs. 25 (2.1) breaths per minute; p<0.05), while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects. Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of severe acidosis.
    Preview · Article · Oct 2013 · PLoS ONE
  • Source
    • "As to moleculaer mechanisms helium imparts influence on molecular machinery of the cells within lungs, the immune system, and the blood, besides improving work of breathing. At least part of therapeutic effects of helium may be ascribed to activation of mitochondrial ATP regulated potassium channels for cell protection [115]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Research of medical gases is well established in Poland and has been marked with the foundation of several professional societies. Numerous academic centers including those dealing with hyperbaric and diving medicine conduct studies of medical gases, in vast majority supported with intramural funds. In general, Polish research of medical gases is very much clinical in nature, covering new applications and safety of medical gases in medicine; on the other hand there are several academic centers pursuing preclinical studies, and elaborating basic theories of gas physiology and mathematical modeling of gas exchange. What dominates is research dealing with oxygen and ozone as well as studies of anesthetic gases and their applications. Finally, several research directions involving noble gas, hydrogen and hydrogen sulfide for cell protection, only begin to gain recognition of basic scientists and clinicians. However, further developments require more monetary spending on research and clinical testing as well as formation of new collective bodies for coordinating efforts in this matter.
    Full-text · Article · Aug 2013
Show more