A Differential Role for Neuropeptides in Acute and Chronic Adaptive Responses to Alcohol: Behavioural and Genetic Analysis in Caenorhabditis elegans

School of Biological Sciences, University of Southampton, Southampton, United Kingdom.
PLoS ONE (Impact Factor: 3.23). 05/2010; 5(5):e10422. DOI: 10.1371/journal.pone.0010422
Source: PubMed


Prolonged alcohol consumption in humans followed by abstinence precipitates a withdrawal syndrome consisting of anxiety, agitation and in severe cases, seizures. Withdrawal is relieved by a low dose of alcohol, a negative reinforcement that contributes to alcohol dependency. This phenomenon of 'withdrawal relief' provides evidence of an ethanol-induced adaptation which resets the balance of signalling in neural circuits. We have used this as a criterion to distinguish between direct and indirect ethanol-induced adaptive behavioural responses in C. elegans with the goal of investigating the genetic basis of ethanol-induced neural plasticity. The paradigm employs a 'food race assay' which tests sensorimotor performance of animals acutely and chronically treated with ethanol. We describe a multifaceted C. elegans 'withdrawal syndrome'. One feature, decrease reversal frequency is not relieved by a low dose of ethanol and most likely results from an indirect adaptation to ethanol caused by inhibition of feeding and a food-deprived behavioural state. However another aspect, an aberrant behaviour consisting of spontaneous deep body bends, did show withdrawal relief and therefore we suggest this is the expression of ethanol-induced plasticity. The potassium channel, slo-1, which is a candidate ethanol effector in C. elegans, is not required for the responses described here. However a mutant deficient in neuropeptides, egl-3, is resistant to withdrawal (although it still exhibits acute responses to ethanol). This dependence on neuropeptides does not involve the NPY-like receptor npr-1, previously implicated in C. elegans ethanol withdrawal. Therefore other neuropeptide pathways mediate this effect. These data resonate with mammalian studies which report involvement of a number of neuropeptides in chronic responses to alcohol including corticotrophin-releasing-factor (CRF), opioids, tachykinins as well as NPY. This suggests an evolutionarily conserved role for neuropeptides in ethanol-induced plasticity and opens the way for a genetic analysis of the effects of alcohol on a simple model system.

Download full-text


Available from: Steven Glautier, Jan 15, 2014
    • "Nonetheless, recent developments in imagebased analysis tools, such as object tracking and classification through mixture models (i.e. Bayesian and Guassian), have allowed for the establishment of medium to high throughput assays, which can automatically measure defects in motility and changes in phenotypes following treatment with chemicals [7] [9]. In spite of this advance, such algorithms rely on the ability to identify and "
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we provide a step-by-step protocol for a practical and low cost whole-organism assay for the screening of chemical compounds for activity against parasitic worms. This assay has considerable advantages over conventional methods, mainly in relation to ease of use, throughput, time and cost. It is readily suited to the screening of hundreds to thousands of compounds for subsequent hit-to-lead optimisation, and should be applicable to many different parasites and other organisms commensurate with the size of wells in the microtiter plates used for phenotypic screening.
    No preview · Article · Sep 2015 · Molecular and Cellular Probes
  • Source
    • "C. elegans has previously been shown to display many behavioral effects of EtOH seen in other model animals. It was previously described that C. elegans displays acute intoxication, acute tolerance, EtOH preference, and withdrawal [31]–[34], [49]. Our study now adds an important fifth EtOH-induced behavior to this list: disinhibition. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol has a wide variety of effects on physiology and behavior. One of the most well-recognized behavioral effects is disinhibition, where behaviors that are normally suppressed are displayed following intoxication. A large body of evidence has shown that alcohol-induced disinhibition in humans affects attention, verbal, sexual, and locomotor behaviors. Similar behavioral disinhibition is also seen in many animal models of ethanol response, from invertebrates to mammals and primates. Here we describe several examples of disinhibition in the nematode C. elegans. The nematode displays distinct behavioral states associated with locomotion (crawling on land and swimming in water) that are mediated by dopamine. On land, animals crawl and feed freely, but these behaviors are inhibited in water. We found that additional behaviors, including a variety of escape responses are also inhibited in water. Whereas alcohol non-specifically impaired locomotion, feeding, and escape responses in worms on land, alcohol specifically disinhibited these behaviors in worms immersed in water. Loss of dopamine signaling relieved disinhibition of feeding behavior, while loss of the D1-like dopamine receptor DOP-4 impaired the ethanol-induced disinhibition of crawling. The powerful genetics and simple nervous system of C. elegans may help uncover conserved molecular mechanisms that underlie alcohol-induced disinhibition of behaviors in higher animals.
    Full-text · Article · Mar 2014 · PLoS ONE
  • Source
    • "Recently, Jee et al. (2012) generated mutants for the SEB-3 receptor, an orphan corticotropin-releasing factor (CRF)-related GPCR, and showed that it is strongly implicated in the worm's stress response and ethanol tolerance. This is a perfect example of an earlier finding that several neuropeptide pathways are involved in C. elegans responses to ethanol (Mitchell et al., 2010). A genome-wide RNAi study of predicted C. elegans GPCRs was performed by Keating et al. (2003) amongst others, which were able to identify a number of neuropeptide receptors involved in reproduction and locomotion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm's complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans.
    Full-text · Article · Dec 2012 · Frontiers in Endocrinology
Show more