Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury

School of Pharmaceutical Sciences, Sun Yat-Sen University, Wai Huan Dong Road 132, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China.
European journal of pharmacology (Impact Factor: 2.53). 07/2010; 638(1-3):150-5. DOI: 10.1016/j.ejphar.2010.04.033
Source: PubMed


One of the main pathological changes in diabetic nephropathy is the renal fibrosis, which includes glomerulosclerosis and tubulointerstitial fibrosis. In vivo and in vitro studies demonstrated that berberine could ameliorate renal dysfunction in diabetic rats with nephropathy and inhibit fibronectin expression in mesangial cells cultured under high glucose. However, the molecular mechanisms have not been fully elucidated. The purpose of the present study was to investigate the effects of berberine on the nuclear factor-kappa B (NF-kappaB) activation, intercellular adhesion molecule-1, transforming growth factor-beta1 and fibronectin protein expression in renal tissue from alloxan-induced diabetic mice with renal damage. The distribution of NF-kappaB p65 in glomerulus and the degradation of I kappaB-alpha in renal cortex were examined by immunohistochemistry and Western blot, respectively. The protein expression of intercellular adhesion molecule-1, transforming growth factor-beta 1 and fibronectin in renal cortex were also detected by Western blot. Our results revealed that in alloxan-induced diabetic mice, the nuclear staining of NF-kappaB p65 was increased in glomerulus, whereas renal I kappaB-alpha protein was significantly reduced. The protein levels of intercellular adhesion molecule-1, transforming growth factor-beta 1 and fibronectin were upregulated in kidney from diabetic mice. After berberine treatment, the immunostaining of NF-kappaB was decreased, and the reduced degradation of I kappaB-alpha level was partially restored. The protein levels of intercellular adhesion molecule-1, transforming growth factor-beta 1 and fibronectin were all downregulated by berberine compared with diabetic model group. In conclusion, the ameliorative effects of berberine on extracellular matrix accumulation might associate with its inhibitory function on NF-kappaB signal pathway.

1 Follower
20 Reads
  • Source
    • "Treatment with TNFα or other activating agents stimulates IκB kinase (IKK), which phosphorylates IκB inducing its degradation via an ubiquitin-dependent proteolysis. Free NF-κB translocates to the nucleus and activates the expression of target genes (74). "
    [Show abstract] [Hide abstract]
    ABSTRACT: O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the serine or threonine residues in proteins. O-GlcNAcylation is a dynamic post-translational modification involved in a wide range of biological processes and diseases such as cancer. This modification can increase and decrease the activity of enzymes as well as interfere with protein stability and interaction. The modulatory capacity of O-GlcNAcylation, as well as protein phosphorylation, is of paramount importance in the regulation of metabolism and intracellular signaling of tumor cells. Thus, understanding the regulation of O-GlcNAcylation in tumor cells and their difference compared to non-tumor cells may elucidate new mechanisms related to tumor generation and development, could provide a new marker to diagnosis and prognosis in patients with cancer and indicate a new target to cancer chemotherapy.
    Full-text · Article · Jun 2014 · Frontiers in Oncology
  • Source
    • "Immunoblotting was performed as previously described [45]. Kidney tissues were lysed, proteins were extracted as previously published [46]. The nuclear and cytoplasmic proteins of GMCs were extracted using a commercially available assay kit (Active Motif, Carlsbad, CA) and the total proteins were extracted as published [46]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Nuclear factor kappa-B (NF-κB) signalling plays an important role in diabetic nephropathy. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. The aim of the current study was to investigate the role of Cx43 in the activation of NF-κB induced by high glucose in glomerular mesangial cells (GMCs) and to determine whether c-Src is involved in this process. Results We found that downregulation of Cx43 expression induced by high glucose activated NF-κB in GMCs. Orverexpression of Cx43 attenuated NF-κB p65 nuclear translocation induced by high glucose. High glucose inhibited the interaction between Cx43 and c-Src, and enhanced the interaction between c-Src and IκB-α. PP2, a c-Src inhibitor, also inhibited the tyrosine phosphorylation of IκB-α and NF-κB p65 nuclear translocation induced by high glucose. Furthermore, overexpression of Cx43 or inhibition of c-Src attenuated the upregulation of intercellular adhesion molecule-1 (ICAM-1), transforming growth factor-beta 1 (TGF-β1) and fibronectin (FN) expression induced by high glucose. Conclusions In conclusion, downregulation of Cx43 in GMCs induced by high glucose activates c-Src, which in turn promotes interaction between c-Src and IκB-α and contributes to NF-κB activation in GMCs, leading to renal inflammation.
    Full-text · Article · May 2013 · Cell Communication and Signaling
  • Source
    • "Due to this attractive characteristic, targeted therapy for the NF-κB pathway has been of interest in the treatment of many inflammatory diseases. Although a great deal of evidence suggests the indirect renoprotective effect of various drugs and drug targets such as RAS blockade, ROS inhibition, alpha-tocopherol, and PPARα and PPARγ agonists secondary to inhibition of the NF-κB pathway [11], [13], [23], [24], [25], [26], [27], there is little evidence suggesting that direct inhibition of the NF-κB pathway has a beneficial effect in diabetic nephropathy. Furthermore, increasing data suggest an important role of the NF-κB pathway in the development of insulin resistance associated with adipose tissue inflammation [9], [28] and there is also some evidence regarding the effect of NF-κB inhibition on insulin resistance. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The NF-κB pathway plays an important role in chronic inflammatory and autoimmune diseases. Recently, NF-κB has also been suggested as an important mechanism linking obesity, inflammation, and metabolic disorders. However, there is no current evidence regarding the mechanism of action of NF-κB inhibition in insulin resistance and diabetic nephropathy in type 2 diabetic animal models. We investigated the effects of the NF-κB inhibitor celastrol in db/db mice. The treatment with celastrol for 2 months significantly lowered fasting plasma glucose (FPG), HbA1C and homeostasis model assessment index (HOMA-IR) levels. Celastrol also exhibited significant decreases in body weight, kidney/body weight and adiposity. Celastrol reduced insulin resistance and lipid abnormalities and led to higher plasma adiponectin levels. Celastrol treatment also significantly mitigated lipid accumulation and oxidative stress in organs including the kidney, liver and adipose tissue. The treated group also exhibited significantly lower creatinine levels and urinary albumin excretion was markedly reduced. Celastrol treatment significantly lowered mesangial expansion and suppressed type IV collagen, PAI-1 and TGFβ1 expressions in renal tissues. Celastrol also improved abnormal lipid metabolism, oxidative stress and proinflammatory cytokine activity in the kidney. In cultured podocytes, celastrol treatment abolished saturated fatty acid-induced proinflammatory cytokine synthesis. Taken together, celastrol treatment not only improved insulin resistance, glycemic control and oxidative stress, but also improved renal functional and structural changes through both metabolic and anti-inflammatory effects in the kidney. These results suggest that targeted therapy for NF-κB may be a useful new therapeutic approach for the management of type II diabetes and diabetic nephropathy.
    Full-text · Article · Apr 2013 · PLoS ONE
Show more