Sympathetic sprouting in visual cortex stimulated by cholinergic denervation rescues expression of two forms of long-term depression at layer 2/3 synapses

Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Neuroscience (Impact Factor: 3.36). 07/2010; 168(3):591-604. DOI: 10.1016/j.neuroscience.2010.04.027
Source: PubMed


Cholinergic innervation of hippocampus and cortex is required for some forms of learning and memory. Several reports have shown that activation of muscarinic m1 receptors induces a long-term depression (mLTD) at glutamate synapses in hippocampus and in several areas of cortex, including perirhinal and visual cortices. This plasticity likely contributes to cognitive function dependent upon the cholinergic system. In rodent models, degeneration of hippocampal cholinergic innervation following lesion of the medial septum stimulates sprouting of adrenergic sympathetic axons, originating from the superior cervical ganglia (SCG), into denervated hippocampal subfields. We previously reported that this adrenergic sympathetic sprouting occurs simultaneously with a reappearance of cholinergic fibers in hippocampus and rescue of mLTD at CA3-CA1 synapses. Because cholinergic neurons throughout basal forebrain degenerate in aging and Alzheimer's disease, it is critical to determine if this compensatory sprouting occurs in other regions impacted by cholinergic cell loss. To this end, we investigated whether lesion of the nucleus basalis magnocellularis (NbM) to cholinergically denervate cortex stimulates adrenergic sympathetic sprouting and the accompanying increase in cholinergic innervation. Further, we assessed whether the presence of sprouting positively correlates with the ability of glutamate synapses in acute visual cortex slices to express mLTD and low frequency stimulation induced LTD (LFS LTD), another cholinergic dependent form of plasticity in visual cortex. We found that both mLTD and LFS LTD are absent in animals when NbM lesion is combined with bilateral removal of the SCG to prevent possible compensatory sprouting. In contrast, when the SCG remain intact to permit sprouting in animals with NbM lesion, cholinergic fiber density is increased concurrently with adrenergic sympathetic sprouting, and mLTD and LFS LTD are preserved. Our findings suggest that autonomic compensation for central cholinergic degeneration is not specific to hippocampus, but is a general repair mechanism occurring in other brain regions important for normal cognitive function.

Download full-text


Available from: Lori Mcmahon, Aug 29, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are considered to play a crucial role in synaptic plasticity in the developing visual cortex. In this study, we established a rat model of binocular form deprivation by suturing the rat binocular eyelids before eye-opening at postnatal day 14. During development, the decay time of excitatory postsynaptic currents mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors of normal rats became longer after eye-opening; however, the decay time did not change significantly in binocular form deprivation rats. The peak value in the normal group became gradually larger with age, but there was no significant change in the binocular form deprivation group. These findings indicate that binocular form deprivation influences the properties of excitatory postsynaptic currents mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat visual cortex around the end of the critical period, indicating that form stimulation is associated with the experience-dependent modification of neuronal synapses in the visual cortex.
    No preview · Article · Dec 2012 · Neural Regeneration Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaques, hyperphosphorylated tau neurofibrillary tangles, and cholinergic dysfunction. Cholinergic degeneration can be mimicked in rats by lesioning medial septum cholinergic neurons. Hippocampal cholinergic denervation disrupts retrograde nerve growth factor (NGF) transport, leading to its accumulation, which subsequently triggers sprouting of noradrenergic sympathetic fibers from the superior cervical ganglia into hippocampus. Previously we reported that coincident with noradrenergic sprouting is the partial reinnervation of hippocampus with cholinergic fibers and the maintenance of an M1 muscarinic acetylcholine receptor (M1 mAChR) dependent long-term depression at CA3-CA1 synapses that is lost in the absence of sprouting. These findings suggest that sympathetic sprouting and the accompanying cholinergic reinnervation maintains M1 mAChR function. Importantly, noradrenergic sympathetic and cholinergic sprouting have been demonstrated in human postmortem AD hippocampus. Furthermore, M1 mAChRs are a recent focus as a therapeutic target for AD given their role in cognition and non-amyloidogenic processing of amyloid-β protein precursor (AβPP). Here we tested the hypotheses that noradrenergic sympathetic sprouting is triggered by NGF, that sprouting maintains non-amyloidogenic AβPP processing, and that sprouting is prevented by intrahippocampal Aβ42 infusion. We found that NGF stimulates sprouting, that sprouting maintains non-amyloidogenic AβPP processing, and that Aβ42 is not only toxic to central cholinergic fibers innervating hippocampus but prevents and reverses noradrenergic sympathetic sprouting and the accompanying cholinergic reinnervation. These findings reiterate the clinical implications of sprouting as an innate compensatory mechanism and emphasize the importance of M1 mAChRs as an AD therapeutic target.
    No preview · Article · Sep 2013 · Journal of Alzheimer's disease: JAD
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscarinic cholinergic receptors modulate the activity and plasticity of the visual cortex. Muscarinic receptors are divided into five subtypes that are not homogeneously distributed throughout the cortical layers and cells types. This distribution results in complex action of the muscarinic receptors in the integration of visual stimuli. Selective activation of the different subtypes can either strengthen or weaken cortical connectivity (e.g., thalamocortical vs. corticocortical), i.e., it can influence the processing of certain stimuli over others. Moreover, muscarinic receptors differentially modulate some functional properties of neurons during experience-dependent activity and cognitive processes and they contribute to the fine-tuning of visual processing. These functions are involved in the mechanisms of attention, maturation and learning in the visual cortex. This minireview describes the anatomo-functional aspects of muscarinic modulation of the primary visual cortex's (V1) microcircuitry.
    Full-text · Article · Jun 2015 · Frontiers in Synaptic Neuroscience