Neutralizing TIMP1 Restores Fecundity in a Rat Model of Endometriosis and Treating Control Rats with TIMP1 Causes Anomalies in Ovarian Function and Embryo Development

Department of Obstetrics, Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
Biology of Reproduction (Impact Factor: 3.32). 08/2010; 83(2):185-94. DOI: 10.1095/biolreprod.109.083287
Source: PubMed


Human and rat endometriotic lesions synthesize and secrete tissue inhibitor of metalloproteinase 1 (TIMP1). More TIMP1 localizes in the ovarian theca in an established rat model for endometriosis (Endo) when compared to surgical controls (Sham). We hypothesized that endometriotic TIMP1 secreted into peritoneal fluid (PF) negatively affects ovarian function and embryogenesis by altering the balance of matrix metalloproteinases (MMPs) and TIMPs. Three experiments were performed modulating TIMP1 in vitro and in vivo to investigate ovarian and embryonic anomalies. The first experiment demonstrated control embryos treated in vitro with endometriotic PF concentrations of TIMP1 developed abnormally. In the second experiment where TIMP1 was modulated in vivo, TIMP1-treated Sham rats had fewer zygotes, ovarian follicles, and corpora lutea (CLs) and poorer embryo quality and development, which is analogous to the findings in Endo rats. Importantly, Endo rats treated with a TIMP1 function-blocking antibody had zygote, follicle, and CL numbers and embryo quality similar to Sham rats. In addition, more TIMP1 inhibitory activity was found in ovaries from Endo and TIMP1-treated Sham rats than in ovaries from Sham or TIMP1 antibody-treated Endo rats. In experiment three, control rats (no surgery) treated with Endo PF had fewer follicles and CLs and increased TIMP1 localization in the ovarian theca whereas treatment with Endo PF stripped of TIMP1 or with Sham PF had no effect, providing further evidence that endometriotic TIMP1 sequesters in the ovary and inhibits MMPs necessary for ovulation. Collectively, these results showed that excessive TIMP1 was deleterious to ovulation and embryo development. Thus, novel TIMP1-modulating therapies may be developed to alleviate infertility in women with endometriosis.

  • Source
    • "Further, reducing levels of intraperitoneal fluid TIMP1 in Endo rats by a TIMP1-function-blocking antibody mitigates the impact of endometriosis on the ovary (Stilley et al. 2010). Conversely , increasing TIMP1 in rats by sham surgery decreases ovarian function to levels similar to those of Endo rats with fewer numbers of follicles and corpora lutea and poor embryo quality (Stilley et al. 2010). In addition to these observations , work at our laboratory has shown that TIMP1 is able to act independently of MMP action to impair the ovulatory function through changes to pathways involved in extracellular matrix production, angiogenesis and apoptosis (Stilley and Sharpe-Timms 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometriosis is a gynecological disease characterized by the presence of endometrial glandular epithelial and stromal cells growing in the extra-uterine environment. The disease afflicts 10%-15% of menstruating women causing debilitating pain and infertility. Endometriosis appears to affect every part of a woman's reproductive system including ovarian function, oocyte quality, embryo development and implantation, uterine function and the endocrine system choreographing the reproductive process and results in infertility or spontaneous pregnancy loss. Current treatments are laden with menopausal-like side effects and many cause cessation or chemical alteration of the reproductive cycle, neither of which is conducive to achieving a pregnancy. However, despite the prevalence, physical and psychological tolls and health care costs, a cure for endometriosis has not yet been found. We hypothesize that endometriosis causes infertility via multifaceted mechanisms that are intricately interwoven thereby contributing to our lack of understanding of this disease process. Identifying and understanding the cellular and molecular mechanisms responsible for endometriosis-associated infertility might help unravel the confounding multiplicities of infertility and provide insights into novel therapeutic approaches and potentially curative treatments for endometriosis.
    Full-text · Article · Feb 2012 · Cell and Tissue Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: An elevator group control system for the traffic control of elevators in a multistory building is studied. A blackboard architecture is used for the development of the control system. The performance of the elevator system is measured by an indicator called system response time. A blackboard system was implemented in Prolog and the opportunistic type of problem solving offered by the blackboard architecture has succeeded in obtaining a solution. The opportunistic type of problem solving was applied to the task of real-time scheduling of elevators which is a complex and ill-defined problem. Simulation results which illustrate the operation of the blackboard system are presented
    No preview · Conference Paper · Oct 1989
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternal diabetes increases the risks for embryo malformations. Matrix metalloproteinase-2 (MMP-2) and MMP-9 are two relevant MMPs for embryo development. Here, we addressed whether changes in these MMPs and in tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-2 are altered in embryos and decidua from type 1 diabetic rats during early organogenesis. Our results demonstrate MMP-2 and MMP-9 overactivities and overexpression, together with increases in lipid peroxidation and nitric oxide production in embryos and decidua from diabetic animals. There is a concomitant increase in the inhibitory activity of TIMP-1 and TIMP-2 in embryos and decidua, and an increase in protein expression of embryonic TIMP-1 and TIMP-2. In situ zymography demonstrated MMPs overactivities despite increased TIMPs in embryos and decidua in maternal diabetes during early organogenesis. This study reveals that maternal diabetes leads to profound alterations in MMPs/TIMPs balance during embryo organogenesis, the gestational period during which most malformations are induced.
    No preview · Article · Sep 2011 · Reproductive Toxicology
Show more