Discovery of Selective Inhibitors Against EBNA1 via High Throughput In Silico Virtual Screening

Hannover Medical School, Germany
PLoS ONE (Impact Factor: 3.23). 04/2010; 5(4):e10126. DOI: 10.1371/journal.pone.0010126
Source: PubMed


Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies and is a causal agent of lymphoproliferative diseases during immunosuppression. While inhibitors of herpesvirus DNA polymerases, like gancyclovir, reduce EBV lytic cycle infection, these treatments have limited efficacy for treating latent infection. EBNA1 is an EBV-encoded DNA-binding protein required for viral genome maintenance during latent infection.
Here, we report the identification of a new class of small molecules that inhibit EBNA1 DNA binding activity. These compounds were identified by virtual screening of 90,000 low molecular mass compounds using computational docking programs with the solved crystal structure of EBNA1. Four structurally related compounds were found to inhibit EBNA1-DNA binding in biochemical assays with purified EBNA1 protein. Compounds had a range of 20-100 microM inhibition of EBNA1 in fluorescence polarization assays and were further validated for inhibition using electrophoresis mobility shift assays. These compounds exhibited no significant inhibition of an unrelated DNA binding protein. Three of these compounds inhibited EBNA1 transcription activation function in cell-based assays and reduced EBV genome copy number when incubated with a Burkitt lymphoma cell line.
These experiments provide a proof-of-principle that virtual screening can be used to identify specific inhibitors of EBNA1 that may have potential for treatment of EBV latent infection.

Download full-text


Available from: Cheng Luo
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence that infection with the Epstein-Barr virus (EBV) plays a role in the development of multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS. This article provides a four-tier hypothesis proposing (1) EBV infection is essential for the development of MS; (2) EBV causes MS in genetically susceptible individuals by infecting autoreactive B cells, which seed the CNS where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells that would otherwise die in the CNS by apoptosis; (3) the susceptibility to develop MS after EBV infection is dependent on a genetically determined quantitative deficiency of the cytotoxic CD8+ T cells that normally keep EBV infection under tight control; and (4) sunlight and vitamin D protect against MS by increasing the number of CD8+ T cells available to control EBV infection. The hypothesis makes predictions that can be tested, including the prevention and successful treatment of MS by controlling EBV infection.
    Full-text · Article · Nov 2010 · The Neuroscientist
  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance of the field: Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is causally associated with endemic forms of Burkitt's lymphoma, nasopharyngeal carcinoma and lymphoproliferative disease in immunosuppressed individuals. On a global scale, EBV infects > 90% of the adult population and is responsible for ∼ 1% of all human cancers. To date, there is no efficacious drug or therapy for the treatment of EBV infection and EBV-related diseases. Areas covered in this review: In this review, we discuss the existing anti-EBV inhibitors and those under development. We discuss the value of different molecular targets, including EBV lytic DNA replication enzymes as well as proteins that are expressed exclusively during latent infection, such as EBV nuclear antigen 1 (EBNA-1) and latent membrane protein 1. As the atomic structure of the EBNA-1 DNA binding domain has been described, it is an attractive target for in silico methods of drug design and small molecule screening. We discuss the use of computational methods that can greatly facilitate the development of novel inhibitors and how in silico screening methods can be applied to target proteins with known structures, such as EBNA-1, to treat EBV infection and disease. What the reader will gain: The reader is familiarized with the problems in targeting of EBV for inhibition by small molecules and how computational methods can greatly facilitate this process. Take home message: Despite the impressive efficacy of nucleoside analogs for the treatment of herpesvirus lytic infection, there remain few effective treatments for latent infections. As EBV latent infection persists within and contributes to the formation of EBV-associated cancers, targeting EBV latent proteins is an unmet medical need. High-throughput in silico screening can accelerate the process of drug discovery for novel and selective agents that inhibit EBV latent infection and associated disease.
    No preview · Article · Dec 2010 · Expert Opinion on Drug Discovery
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many pathogens relevant to human disease do not infect other animal species. Therefore, animal models that reconstitute or harbor human tissues are explored as hosts for these. In this review, we will summarize recent advances to utilize mice with human immune system components, reconstituted from hematopoietic progenitor cells in vivo. Such mice can be used to study human pathogens that replicate in leukocytes. In addition to studying the replication of these pathogens, the reconstituted human immune system components can also be analyzed for initiating immune responses and control against these infections. Moreover, these new animal models of human infectious disease should replicate the reactivity of the human immune system to vaccine candidates and, especially, the adjuvants contained in them, more faithfully.
    Full-text · Article · Feb 2011 · Immunology and Cell Biology
Show more