Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhibitory Domain

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
Journal of Molecular Biology (Impact Factor: 4.33). 06/2010; 399(3):347-57. DOI: 10.1016/j.jmb.2010.04.022
Source: PubMed


Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled with the multiple critical roles played by Ebola virus VP35 proteins, highlight the viability of VP35 as a potential target for therapeutic development.

Download full-text


Available from: Dominika Borek
  • Source
    • "Sequence comparison of VP35 IID from different species of EBOV and MARV reveal a high degree of sequence similarity, especially in the functionally important regions, such as the first basic patch and central basic patch. Recent structural studies of Reston EBOV VP35 IID reveal a structure that is very similar to ZEBOV VP35 [30,31]. Collectively, these studies suggest that there could be a high degree of structural conservation of VP35 among the different filoviruses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV) and Marburgvirus (MARV), causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN) response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.
    Full-text · Article · Sep 2011 · Viruses
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which these deadly viruses counteract the IFN system. It will be of interest to determine how these differences influence pathogenesis.
    Preview · Article · Sep 2009 · Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune and inflammatory response represents one of the key stumbling blocks limiting the efficacy of viral-based therapies. Numerous human diseases could be corrected or ameliorated if viruses were harnessed to safely and effectively deliver therapeutic genes to diseased cells and tissues in vivo. Recent studies have shown that host cells recognize viruses using an elaborate network of sensor proteins localized at the plasma membrane, in endosomes, or in the cytosol. Three classes of sensors have been implicated in sensing viruses in mammalian cells-Toll-like receptors (TLRs), retinoid acid-inducible gene (RIG)-I-like receptors (RLRs), and nucleotide oligomerization domain (NOD)-like receptors (NLRs). The interaction of virus-associated nucleic acids with these sensor molecules triggers a signaling cascade that activates the principal host defense program aimed to limit or eliminate virus infection and restore tissue homeostasis. In addition, recent data strongly suggest that host cells can mount innate immune responses to viruses without prior recognition of their nucleic acids. To deliver therapeutic genes into the nuclei of diseased cells, viral gene therapy vectors must be efficient at penetrating either the plasma or endosomal membrane. The therapeutic use of high numbers of virus particles disturbs cellular homeostasis, triggering cell damage and stress pathways, or "sensing of modified self". Accumulating data indicate that the sensing of modified self might represent a powerful framework explaining the innate immune response activation by viral gene therapy vectors.
    Full-text · Article · Aug 2010 · Molecular Therapy
Show more