Overflow Microfluidic Networks for Open and Closed Cell Cultures on Chip

IBM Research-Zurich, Saumerstrasse 4, 8803 Ruschlikon, Switzerland.
Analytical Chemistry (Impact Factor: 5.64). 04/2010; 82(9):3936-42. DOI: 10.1021/ac100771r
Source: PubMed


Microfluidics have a huge potential in biomedical research, in particular for studying interactions among cell populations that are involved in complex diseases. Here, we present "overflow" microfluidic networks (oMFNs) for depositing, culturing, and studying cell populations, which are plated in a few microliters of cell suspensions in one or several open cell chambers inside the chip and subsequently cultured for several days in vitro (DIV). After the cells have developed their phenotype, the oMFN is closed with a lid bearing microfluidic connections. The salient features of the chips are (1) overflow zones around the cell chambers for drawing excess liquid by capillarity from the chamber during sealing the oMFN with the lid, (2) flow paths from peripheral pumps to cell chambers and between cell chambers for interactive flow control, (3) transparent cell chambers coated with cell adhesion molecules, and (4) the possibility to remove the lid for staining and visualizing the cells after, for example, fixation. Here, we use a two-chamber oMFN to show the activation of purinergic receptors in microglia grown in one chamber, upon release of adenosine triphosphate (ATP) from astrocytes that are grown in another chamber and challenged with glutamate. These data validate oMFNs as being particularly relevant for studying primary cells and dissecting the specific intercellular pathways involved in neurodegenerative and neuroinflammatory brain diseases.

Download full-text


Available from: Fabio Bianco, Jan 08, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe matrix-isolated, reaction chemistry based measurement of arsenic in water down to submicrograms per liter levels in a system that requires only air, water, electricity, and dilute sulfuric acid, the bulk of the latter being recycled. Gas phase chemiluminescence (GPCL) measurement of arsenic is made in an automated batch system with arsenic in situ electroreduced to arsine that is reacted with ozone to emit light. The ozone is generated from oxygen that is simultaneously anodically produced. Of 22 different electrode materials studied, graphite was chosen as the cathode. As(V) is reduced much less efficiently to AsH(3) than As(III). Prereducing all As to As(III) is difficult in the field and tedious. Oxidizing all As to As(V) is simple (e.g., with NaOCl) but greatly reduces subsequent conversion to AsH(3) and hence sensitivity. The rate of the AsH(3)-O(3) GPCL reaction and hence signal intensity increases with [O(3)]. Using oxygen to feed the ozonizer produces higher [O(3)] and substantial signal enhancement. This makes it practical to measure all arsenic as As(V). The system exhibits an LOD (S/N = 3) for total arsenic as As(V) of 0.36 microg/L (5 mL sample). Comparison of total As results in native and spiked water samples with those from inductively coupled plasma mass spectrometry (ICPMS) and other techniques show high correlation (r(2) = 0.9999) and near unity slopes.
    Full-text · Article · Apr 2010 · Analytical Chemistry
  • Source

    Preview · Article · Apr 2010 · Analytical Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The optimal molecular design of an amphiphilic copolymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dimethylsiloxane (DMS) units for modifying a poly(dimethylsiloxane) (PDMS) surface in a quick and simple manner was developed. Block- and random-type copolymers with three different compositions were each coated on a PDMS surface in a protic solution. The resulting surfaces were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, contact angle measurement. From the results, the random-type copolymer containing 86% hydrophobic DMS unit was the most suitable molecular design to be stably coated on the PDMS surface. From view point of bioengineering application, it was confirmed that for optimal suppression of protein adsorption and cell adhesion on a PDMS surface, the surface should be coated by immersing it in the polymer solutions with a concentration of 30 mg mL−1 for more than 30 s.
    No preview · Article · Mar 2011 · Soft Matter
Show more