In vitro phage display in a rat beta cell line: A simple approach for the generation of a single-chain antibody targeting a novel beta cell-specific epitope

Department of Internal Medicine I, Division of Endocrinology and Metabolism, University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle de la Camp Platz 1, 44789, Bochum, Germany.
Diabetologia (Impact Factor: 6.67). 04/2010; 53(7):1384-94. DOI: 10.1007/s00125-010-1725-9
Source: PubMed


The aim of the present study was to evaluate in vitro phage display in a beta cell line as a novel strategy for the isolation of beta cell-specific agents/biomarkers.
A single-chain antibody (SCA) library was pre-incubated with AR42J cells in order to eliminate SCAs with exocrine binding properties. It was then panned against INS-1 cells to select beta cell-targeted antibodies.
By these means, we isolated a novel antibody, SCA B5, that binds rapidly (6.0 min) and with a 450-fold higher specificity to beta cells relative to exocrine cells. We estimated for SCA B5 a binding affinity in the low micromol/l range and 858 binding sites per beta cell. Confocal microscopy showed binding to the beta cell surface and confirmed subsequent internalisation. Moreover, staining of rat and human pancreatic tissue sections with SCA B5 suggests that the target epitope is presented in pancreatic beta cells of different origins. Infrared imaging revealed that labelling of beta cells with tracer SCA B5 is strictly dependent on beta cell mass. With competition assays we excluded insulin, glutamate decarboxylase, C-peptide and islet amyloid polypeptide as SCA B5 targets. In accordance with these predictions, SCA B5 homed in vivo highly selectively to normal beta cells and dysfunctional beta cells of diabetic rats. Moreover, accumulation of radioactively labelled SCA B5 in the pancreas was reduced by 80% after pre-injection with unlabelled SCA B5, thereby confirming the specific uptake in the pancreas.
We report a simple strategy for the generation of an SCA targeting a novel beta cell-specific epitope.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic syndrome is a fast growing public health burden for almost all the developed countries and many developing nations. Despite intense efforts from both biomedical and clinical scientists, many fundamental questions regarding its aetiology and development remain unclear, partly due to the lack of suitable imaging technologies to visualize lipid composition and distribution, insulin secretion, beta-cell mass and functions in vivo. Such technologies would not only impact on our understanding of the complexity of metabolic disorders such as obesity and diabetes, but also aid in their diagnosis, drug development and assessment of treatment efficacy. In this article we discuss and propose several strategies for visualization of physiological and pathological changes that affect pancreas and adipose tissue as a result of the development of metabolic diseases.
    Full-text · Article · Jun 2010 · EMBO Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we reported the generation of single-chain antibodies (SCAs) highly specific for rodent and human β-cells. Our current report describes the generation of a fusion protein of one of these SCAs (SCA B1) with a NF-κB essential modifier (NEMO)-binding domain (NBD) peptide, thereby creating a selective inhibitor of NF-κB activation in β-cells. The SCA B1-NBD fusion protein was cloned in the pIRES-EGFP, expressed in bacteria, and purified by metal affinity chromatography; the newly generated complex was then administered intravenously to rodents and evaluated for its ability to protect β-cells against cytokines in vitro and diabetogenic agents in vivo. First, it was shown clearly that our SCA B1-NBD fusion protein binds highly selective to CD rat β-cells in vivo. Second, we observed that SCA B1-mediated in vivo delivery of the NBD peptide completely blocked IL-1β + IFNγ- and TNFα + IFNγ-mediated induction of NF-κB as well as islet dysfunction in culture. Finally, repeated intravenous injection of SCA B1-NBD prior to multiple low-dose administration of streptozotocin in CD mice not only induced a striking resistance to diabetes development but also preserved β-cell mass. In conclusion, our data show for the first time that a SCA B1-NBD fusion peptide reliably protects β-cells against cytokines in vitro and allows protection from diabetes development in CD mice in vivo.
    Preview · Article · Apr 2011 · AJP Endocrinology and Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To devise successful imaging and therapeutic strategies, the identification of β-cell surface markers is one of the challenges in diabetes research that has to be resolved. We previously showed that IC2, a rat monoclonal IgM antibody, can be used for ex vivo determination of β-cell mass by imaging. Further progress toward the development of an antibody-based imaging agent was hampered by the lack of knowledge regarding the nature and composition of the IC2 antigen. Here, we show a series of systematic experiments involving classical lipid extraction and chromatography techniques combined with immunochemistry, which led to the identification of sphingomyelin as the target antigen assembled in the form of patches on the β-cell surface. Our findings were verified by modulating SM by enzymatic cleavage, downregulation, upregulation, and perturbation of membrane SM and observation of corresponding changes in IC2 binding. Cholesterol participates in stabilization of these patches, as its removal results in loss of IC2 binding. We believe that these findings have implications for identifying future ligands for the proposed antigen for imaging purposes as well as for potential therapy, as sphingomyelin has been shown to play a role in the apoptotic cascade in pancreatic β cells.
    Preview · Article · Sep 2011 · The Journal of Lipid Research
Show more