Interactome Mapping of the Phosphatidylinositol 3-Kinase-Mammalian Target of Rapamycin Pathway Identifies Deformed Epidermal Autoregulatory Factor-1 as a New Glycogen Synthase Kinase-3 Interactor

UMR5239 Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Lyon, France.
Molecular & Cellular Proteomics (Impact Factor: 6.56). 04/2010; 9(7):1578-93. DOI: 10.1074/mcp.M900568-MCP200
Source: PubMed


The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-hybrid screen for 33 components of the PI3K-mTOR pathway. Identification of 67 new interactions was followed by validation by co-affinity purification and exhaustive literature curation of existing information. We provide a nearly complete, functionally annotated interactome of 802 interactions for the PI3K-mTOR pathway. Our screen revealed a predominant place for glycogen synthase kinase-3 (GSK3) A and B and the AMP-activated protein kinase. In particular, we identified the deformed epidermal autoregulatory factor-1 (DEAF1) transcription factor as an interactor and in vitro substrate of GSK3A and GSK3B. Moreover, GSK3 inhibitors increased DEAF1 transcriptional activity on the 5-HT1A serotonin receptor promoter. We propose that DEAF1 may represent a therapeutic target of lithium and other GSK3 inhibitors used in bipolar disease and depression.

Download full-text


Available from: Christine Brun, Feb 12, 2014
  • Source
    • "We compared our AMPK-α1 and -β1 interactome with existing data. Although several partners of AMPK-α1 and -β1 have been reported214143, no global interactome analysis has focused on AMPK subunits. In particular, none of the well-characterized partners of these subunits have been identified in pancreatic beta-cells, based on mass spectrometry. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The heterotrimeric enzyme AMP-activated protein kinase (AMPK) is a major metabolic factor that regulates the homeostasis of cellular energy. In particular, AMPK mediates the insulin resistance that is associated with type 2 diabetes. Generally, cellular processes require tight regulation of protein kinases, which is effected through their formation of complex with other proteins and substrates. Despite their critical function in regulation and pathogenesis, there are limited data on the interaction of protein kinases. To identify proteins that interact with AMPK, we performed large-scale affinity purification (AP)-mass spectrometry (MS) of the AMPK-α1 and -β1 subunits. Through a comprehensive analysis, using a combination of immunoprecipitaion and ion trap mass spectrometry, we identified 381 unique proteins in the AMPKα/β interactomes: 325 partners of AMPK-α1 and 243 for AMPK-β1. Further, we identified 196 novel protein-protein interactions with AMPK-α1 and AMPK-β1. Notably, in our bioinformatics analysis, the novel interaction partners mediated functions that are related to the regulation of actin organization. Specifically, several such proteins were linked to pancreatic beta-cell functions, including glucose-stimulated insulin secretion, beta-cell development, beta-cell differentiation, and cell-cell communication.
    Full-text · Article · Mar 2014 · Scientific Reports
  • Source
    • "To verify whether the function association approach is reasonable to infer the function relationships of those proteins to the two diseases, we performed systematic literature mining to survey whether those candidate genes are reported in PubMed articles for SCZ and T2D. As a result, we found that 59 candidate genes have been connected to SCZ [34-38], 77 candidate genes have been linked to T2D [39-43], while 25 candidate genes [44-49] have been implicated to both SCZ and T2D with various studies (Additional file 5). Totally, 161 candidate genes (~45% of all candidate genes) have been related to either SCZ or T2D or both diseases with various experimental approaches, further proving the rationale of "function association" in the application of disease related gene inference. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Schizophrenia (SCZ) and type 2 diabetes mellitus (T2D) are both complex diseases. Accumulated studies indicate that schizophrenia patients are prone to present the type 2 diabetes symptoms, but the potential mechanisms behind their association remain unknown. Here we explored the pathogenetic association between SCZ and T2D based on pathway analysis and protein-protein interaction. Results With sets of prioritized susceptibility genes for SCZ and T2D, we identified significant pathways (with adjusted p-value < 0.05) specific for SCZ or T2D and for both diseases based on pathway enrichment analysis. We also constructed a network to explore the crosstalk among those significant pathways. Our results revealed that some pathways are shared by both SCZ and T2D diseases through a number of susceptibility genes. With 382 unique susceptibility proteins for SCZ and T2D, we further built a protein-protein interaction network by extracting their nearest interacting neighbours. Among 2,104 retrieved proteins, 364 of them were found simultaneously interacted with susceptibility proteins of both SCZ and T2D, and proposed as new candidate risk factors for both diseases. Literature mining supported the potential association of partial new candidate proteins with both SCZ and T2D. Moreover, some proteins were hub proteins with high connectivity and interacted with multiple proteins involved in both diseases, implying their pleiotropic effects for the pathogenic association. Some of these hub proteins are the components of our identified enriched pathways, including calcium signaling, g-secretase mediated ErbB4 signaling, adipocytokine signaling, insulin signaling, AKT signaling and type II diabetes mellitus pathways. Through the integration of multiple lines of information, we proposed that those signaling pathways, which contain susceptibility genes for both diseases, could be the key pathways to bridge SCZ and T2D. AKT could be one of the important shared components and may play a pivotal role to link both of the pathogenetic processes. Conclusions Our study is the first network and pathway-based systematic analysis for SCZ and T2D, and provides the general pathway-based view of pathogenetic association between two diseases. Moreover, we identified a set of candidate genes potentially contributing to the linkage between these two diseases. This research offers new insights into the potential mechanisms underlying the co-occurrence of SCZ and T2D, and thus, could facilitate the inference of novel hypotheses for the co-morbidity of the two diseases. Some etiological factors that exert pleiotropic effects shared by the significant pathways of two diseases may have important implications for the diseases and could be therapeutic intervention targets.
    Full-text · Article · Jan 2013 · BMC Medical Genomics
  • Source
    • "There is increasing evidence that many of the behavioral actions of lithium in rodents results from inhibiting GSK3 (Jope, 1999; Manji et al., 2000; Phiel and Klein, 2001; Harwood and Agam, 2003; Jope and Johnson, 2004), and that the diverse effects of lithium may largely be due to the numerous substrates of GSK3 and its consequential influences on many cellular functions. Evidence has been reported that GSK3 phosphorylates more than 100 substrates, and projections suggest that there may be many more proteins that are phosphorylated by GSK3 (Pilot-Storck et al., 2010; Taelman et al., 2010). Thus, it is inevitable that an inhibitor of GSK3, such as lithium, would have many effects on cellular functions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mood disorders major depressive disorder and bipolar disorder are prevalent, are inadequately treated, and little is known about their etiologies. A better understanding of the causes of mood disorders would benefit from improved animal models of mood disorders, which now rely on behavioral measurements. This review considers the limitations in relating measures of rodent behaviors to mood disorders, and the evidence from behavioral assessments indicating that glycogen synthase kinase-3 (GSK3) dysregulation promotes mood disorders and is a potential target for treating mood disorders. The classical mood stabilizer lithium was identified by studying animal behaviors and later was discovered to be an inhibitor of GSK3. Several mood-relevant behavioral effects of lithium in rodents have been identified, and most have now been shown to be due to its inhibition of GSK3. An extensive variety of pharmacological and molecular approaches for manipulating GSK3 are discussed, the results of which strongly support the proposal that inhibition of GSK3 reduces both depression-like and manic-like behaviors. Studies in human postmortem brain and peripheral cells also have identified correlations between alterations in GSK3 and mood disorders. Evidence is reviewed that depression may be associated with impaired inhibitory control of GSK3, and mania by hyper-stimulation of GSK3. Taken together, these studies provide substantial support for the hypothesis that inhibition of GSK3 activity is therapeutic for mood disorders. Future research should identify the causes of dysregulated GSK3 in mood disorders and the actions of GSK3 that contribute to these diseases.
    Full-text · Article · Aug 2011 · Frontiers in Molecular Neuroscience
Show more