Acidic pH-Responsive Nanogels as Smart Cargo Systems for the Simultaneous Loading and Release of Short Oligonucleotides and Magnetic Nanoparticles

Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.
Langmuir (Impact Factor: 4.46). 03/2010; 26(12):10315-24. DOI: 10.1021/la1004819
Source: PubMed


Smart materials able to sense environmental stimuli can be exploited as intelligent carrier systems. Acidic pH-responsive polymers, for instance, exhibit a variation in the ionization state upon lowering the pH, which leads to their swelling. The different permeability of these polymers as a function of the pH could be exploited for the incorporation and subsequent release of previously trapped payload molecules/nanoparticles. We provide here a proof of concept of a novel use of pH-responsive polymer nanostructures based on 2-vinylpyridine and divinylbenzene, having an overall size below 200 nm, as cargo system for magnetic nanoparticles, for oligonucleotide sequences, as well as for their simultaneous loading and controlled release mediated by the pH.

Download full-text


Available from: Smriti Rekha Deka, Sep 08, 2014
  • Source
    • "At high pH, the majority of the AAc groups in the PNIPAM-co-PAA microgel were deprotonated because the pKa of polyacrylic acid is approximately 4.25. This property increases the size of the PNIPAM-co-PAA microgel at high pH due to charge repulsion among the AAc groups and added osmotic pressure (Donna effect) arising from the incorporated counter ions [23,24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. Methods: We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. Results: Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. Conclusion: Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM microgel released the drug more slowly than did core/shell PNIPAM-co-PAA, and it effectively inhibited the growth of MCF-7 cells.
    Full-text · Article · Mar 2014 · Journal of Breast Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included.
    Full-text · Article · Oct 2010 · International Journal of Pharmaceutics
  • [Show abstract] [Hide abstract]
    ABSTRACT: A multifunctional stable and pH-responsive polymer vesicle nanocarrier system was developed for combined tumor-targeted delivery of an anticancer drug and superparamagnetic iron oxide (SPIO) nanoparticles (NPs). These multifunctional polymer vesicles were formed by heterofunctional amphiphilic triblock copolymers, that is, R (folate (FA) or methoxy)-poly(ethylene glycol)(M(w):5000)-poly(glutamate hydrozone doxorubicin)-poly(ethylene glycol) (M(w):2000)-acrylate (i.e., R (FA or methoxy)-PEG(114)-P(Glu-Hyd-DOX)-PEG(46)-acrylate). The amphiphilic triblock copolymers can self-assemble into stable vesicles in aqueous solution. It was found that the long PEG segments were mostly segregated into the outer hydrophilic PEG layers of the vesicles, thereby providing active tumor targeting via FA, while the short PEG segments were mostly segregated into the inner hydrophilic PEG layer of the vesicles, thereby making it possible to cross-link the inner PEG layer via the acrylate groups for enhanced in vivo stability. The therapeutic drug, DOX, was conjugated onto the polyglutamate segment, which formed the hydrophobic membrane of the vesicles using a pH-sensitive hydrazone bond to achieve pH-responsive drug release, while the hydrophilic SPIO NPs were encapsulated into the aqueous core of the stable vesicles, allowing for ultrasensitive magnetic resonance imaging (MRI) detection. The SPIO/DOX-loaded vesicles demonstrated a much higher r(2) relaxivity value than Feridex, a commercially available SPIO-based T(2) contrast agent, which was attributed to the high SPIO NPs loading level and the SPIO clustering effect in the aqueous core of the vesicles. Results from flow cytometry and confocal laser scanning microscopy (CLSM) analysis showed that FA-conjugated vesicles exhibited higher cellular uptake than FA-free vesicles which also led to higher cytotoxicity. Thus, these tumor-targeting multifunctional SPIO/DOX-loaded vesicles will provide excellent in vivo stability, pH-controlled drug release, as well as enhanced MRI contrast, thereby making targeted cancer therapy and diagnosis possible.
    No preview · Article · Oct 2010 · ACS Nano
Show more