Further mapping of quantitative trait loci for female sterility in wheat ( Triticum aestivum L.)

Institute of Plant Biotechnology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, People's Republic of China.
Genetics Research (Impact Factor: 1.47). 03/2010; 92(1):63-70. DOI: 10.1017/S0016672310000054
Source: PubMed


Epistasis underlying fertility plays an important role in crop breeding. Although a new female sterile mutant in wheat, XND126, has been identified and a major quantitative trait locus (QTL), taf1, for the female sterility has been mapped, the genetic architecture of the female sterility needs to be further addressed. To identify the interaction involving the gene(s) controlling the female sterility, an investigation was carried out for the seed setting ratio in an F2 population derived from the cross between XND126 and Gaocheng 8901. Among 1250 simple sequence repeat (SSR) primer pairs in the whole genome, a total of 21 markers, obtained by recessive class approach, along with other ten tightly linked markers on reference maps in wheat, were used to survey 243 F2 individuals. As a result, 28 markers were mapped into five genetic linkage groups. The performance for female sterility for each F2 individual was evaluated simultaneously at the Urumqi and Huai'an experimental stations in 2006-2007. The two phenotypic datasets along with marker information were jointly analysed in the detection of QTL using penalized maximum likelihood approach. A total of six QTLs, including two main-effect QTLs, three epistatic QTLs and one environmental interaction and accounting for 0.67-24.55% of the total phenotypic variance, were identified. All estimated effects accounted for 53.26% of the total phenotypic variation. The taf1 detected in previous study was also located on the same marker interval on chromosome 2DS. These results enrich our understanding of the genetic basis of the female sterility.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: A heterogeneous model is developed for the regeneration of the Cr2O3/Al2O3 catalyst for the propane dehydrogenation process by considering the internal mass transfer and external mass/heat transfer during the coke combustion. Simulation shows that under practical operating conditions, multi-steady states exist for the catalyst pellets and the catalyst temperature is sensitive to gas temperature. However, at increased mass flow rate or lowered oxygen concentration, multi-steady states will not appear. Under the strong influences of film diffusion, the coke in the packed bed reactor will first be exhausted at the inlet, while if the film diffusion resistance is decreased, the position of first coke exhaustion moves toward the outlet of the reactor.
    No preview · Article · Aug 2010 · Chinese Journal of Chemical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several biologically significant parameters that are related to rice tillering are closely associated with rice grain yield. Although identification of the genes that control rice tillering and therefore influence crop yield would be valuable for rice production management and genetic improvement, these genes remain largely unidentified. In this study, we carried out functional mapping of quantitative trait loci (QTLs) for rice tillering in 129 doubled haploid lines, which were derived from a cross between IR64 and Azucena. We measured the average number of tillers in each plot at seven developmental stages and fit the growth trajectory of rice tillering with the Wang–Lan–Ding mathematical model. Four biologically meaningful parameters in this model––the potential maximum for tiller number (K), the optimum tiller time (t 0), and the increased rate (r), or the reduced rate (c) at the time of deviation from t 0––were our defined variables for multi-marker joint analysis under the framework of penalized maximum likelihood, as well as composite interval mapping. We detected a total of 27 QTLs that accounted for 2.49–8.54% of the total phenotypic variance. Nine common QTLs across multi-marker joint analysis and composite interval mapping showed high stability, while one QTL was environment-specific and three were epistatic. We also identified several genomic segments that are associated with multiple traits. Our results describe the genetic basis of rice tiller development, enable further marker-assisted selection in rice cultivar development, and provide useful information for rice production management.
    Full-text · Article · Oct 2010 · MGG Molecular & General Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seed size traits in soybean--length, width and thickness--and their corresponding ratios--length-to-width, length-to-thickness and width-to-thickness--play a crucial role in determining seed appearance, quality and yield. In this study, an attempt was made to detect quantitative trait loci (QTL) for the aforementioned seed size traits in F(2:3), F(2:4) and F(2:5) populations from the direct and reciprocal crosses of Lishuizhongzihuang with Nannong 493-1, using multi-QTL joint analysis (MJA) along with composite interval mapping (CIM). A total of 121 main-effect QTL (M-QTL), six environmental effects, eight environment-by-QTL interactions, five cytoplasmic effects and 92 cytoplasm-by-QTL interactions were detected. Fifty-two common M-QTL across MJA and CIM, 21 common M-QTL in more than two populations and 5 M-QTL in all three populations showed the stability of the results. Five M-QTL had higher heritability, greater than 20%. In addition, 28 cytoplasm-by-QTL and 4 environment-by-QTL interactions were confirmed by CIM. Most M-QTL were clustered in eight chromosomal regions. Our results provide a good foundation for fine mapping, cloning and designed molecular breeding of favorable genes related to soybean seed size traits.
    Full-text · Article · Oct 2010 · Theoretical and Applied Genetics
Show more