ArticlePDF Available

What is the Best Dose of Nature and Green Exercise for Improving Mental Health? A Multi-Study Analysis

Authors:

Abstract and Figures

Green exercise is activity in the presence of nature. Evidence shows it leads to positive short and long-term health outcomes. This multistudy analysis assessed the best regime of dose(s) of acute exposure to green exercise required to improve self-esteem and mood (indicators of mental health). The research used meta-analysis methodology to analyze 10 UK studies involving 1252 participants. Outcomes were identified through a priori subgroup analyses, and dose-responses were assessed for exercise intensity and exposure duration. Other subgroup analyses included gender, age group, starting health status, and type of habitat. The overall effect size for improved self-esteem was d = 0.46 (CI 0.34-0.59, p < 0.00001) and for mood d = 0.54 (CI 0.38-0.69, p < 0.00001). Dose responses for both intensity and duration showed large benefits from short engagements in green exercise, and then diminishing but still positive returns. Every green environment improved both self-esteem and mood; the presence of water generated greater effects. Both men and women had similar improvements in self-esteem after green exercise, though men showed a difference for mood. Age groups: for self-esteem, the greatest change was in the youngest, with diminishing effects with age; for mood, the least change was in the young and old. The mentally ill had one of the greatest self-esteem improvements. This study confirms that the environment provides an important health service.
Content may be subject to copyright.
What is the Best Dose of Nature
and Green Exercise for Improving
Mental Health? A Multi-Study
Analysis
JO BARTON AND JULES PRETTY*
Interdisciplinary Centre for Environment and Society,
Department of Biological Sciences, University of Essex,
Colchester CO4 3SQ, U.K.
Received October 21, 2009. Revised manuscript received
March 12, 2010. Accepted March 15, 2010.
Green exercise is activity in the presence of nature. Evidence
shows it leads to positive short and long-term health
outcomes. This multistudy analysis assessed the best regime
of dose(s) of acute exposure to green exercise required to improve
self-esteem and mood (indicators of mental health). The
research used meta-analysis methodology to analyze 10 UK
studies involving 1252 participants. Outcomes were identified
through a priori subgroup analyses, and dose-responses were
assessed for exercise intensity and exposure duration. Other
subgroup analyses included gender, age group, starting health
status, and type of habitat. The overall effect size for improved
self-esteem was d)0.46 (CI 0.34-0.59, p<0.00001) and for
mood d)0.54 (CI 0.38-0.69, p<0.00001). Dose responses
for both intensity and duration showed large benefits from short
engagements in green exercise, and then diminishing but
still positive returns. Every green environment improved both self-
esteem and mood; the presence of water generated greater
effects. Both men and women had similar improvements in self-
esteem after green exercise, though men showed a difference
for mood. Age groups: for self-esteem, the greatest change
was in the youngest, with diminishing effects with age; for mood,
the least change was in the young and old. The mentally ill
had one of the greatest self-esteem improvements. This study
confirms that the environment provides an important health
service.
Introduction
Ecosystems provide important services driven by provision-
ing, regulation, and support functions (1, 2). It is clear they
also provide a health service arising from direct activities in
contact with nature. Recognition of the potential contribution
of natural ecosystems to human population health may
contribute to addressing problems associated with inactivity,
obesity, mental ill-health, and other chronic diseases. Many
of these urgent health challenges are also connected to
sedentary and indoor lifestyles (3, 4). Physical inactivity results
in 1.9 million deaths worldwide annually (5), roughly 1 in 25
of all deaths. Preindustrial humans expend some 1000 kcal
on activity per day, whereas for modern humans the mean
is 300 kcal (6). Inactivity increases the likelihood of obesity
and reduces life expectancy. Such physical inactivity tracks
from childhood, and is a key risk factor in many chronic
diseases of later life (7). Mental health disorders are now
known to affect most people at some point in their lives,
with 16% of the general population affected at any given
time (8, 9). As aging populations will put additional pressure
on health services, it is becoming increasingly urgent that all
sectors of the population undertake and sustain healthy
behaviors as early in life as possible (10).
Evidence shows that exposure to natural places can lead
to positive mental health outcomes, whether a view of nature
from a window, being within natural places, or exercising in
these environments (11–13). At the population level, there
are associations between health and proximity to greenspaces
(14). Thus, green space is important for mental health and
regular engagement is linked with longevity and decreased
risk of mental ill-health (15). Yet as more than half of the
world’s population now live in urban settlements, daily
environmental contact is becoming rarer (16), suggesting
the growing importance of access to local greenspace for
both quality of life and the sustainability of towns and cities
(17, 18). It is also well-known that physical activity improves
both physical and mental health of all age groups (19–22).
Thus “green exercise”, consisting of activity in green places
(in the presence of nature), is predicted to generate positive
health outcomes (23–26), accrue ecological knowledge
(21, 22, 27, 28), foster social bonds (29), and influence
behavioral choices (11, 24–26, 30, 31). In economic terms,
there should be cost savings if natural places are both
protected (32, 33) and used as sites for activity, thus generating
health benefits.
Achieving good mental health is not just a reflection of
the absence of disease or disability. It comprises a balance
between self-satisfaction, independence, capability and
competency, achieving potential, and coping well with stress
and adversity (34). Both self-esteem and mood are short-
and long-term determinants of mental health: both are
commonly assessed in green-exercise research. Self-esteem
is an evaluation of a person’s sense of worth or value (35),
and there are strong positive correlations between self-esteem
and health (28, 36). There are further inverse relationships
between self-esteem and mental health (e.g., depression,
social anxiety, loneliness, alienation) (35). High levels of self-
esteem are associated with healthy behaviors, such as healthy
eating, participating in physical activities, not smoking, and
lower suicide risks (37).
Mood is an integral component of daily life and strongly
influences feelings of happiness, appreciating the moment,
coping with stressful situations, and quality of life (38, 39).
Mood is linked with physical health and is known to affect
the immune system and the onset of certain diseases (40).
Acute changes in mood are generally maintained for 2-4h
post exercise, though this relatively short duration of
enhanced mood has a positive influence on quality of life
including more social interaction, improved productivity,
and better behavioral choices (39–41). Regular exercise
contributes to sustained chronic changes in mood. Thus,
both self-esteem and mood are regularly used to assess the
outcomes of acute-exposures to nature-based interventions.
However, health as an environmental service remains hard
to value (42–44), and these scientific findings do not yet
appear to have influenced the planning of urban and rural
environments, priorities for public health, social care and
youth offender programs, nor recommendations for the
emergence of sustainable lifestyles. The evidence to date
incorporates different methodologies and variables mea-
sured, along with international differences in typologies of
greenspaces, length of activity programs, and primary
* Corresponding author phone: +44-1206-873323; e-mail:jpretty@
essex.ac.uk.
Environ. Sci. Technol. 2010, 44, 3947–3955
10.1021/es903183r 2010 American Chemical Society VOL. 44, NO. 10, 2010 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 93947
Published on Web 03/25/2010
research questions. Uncertainties remain on the ideal
duration and intensity of nature-based activities to improve
mental health for different cohorts of people. It is also unclear
how recommendations should vary according to participant
characteristics. The purpose of this research was thus to assess
the best regime of dose(s) of acute exposure to green exercise
required to improve self-esteem and mood. The term “dose
of green exercise” represents the linked relationships between
duration of exposure, intensity of activity, and type of
greenspace.
Detailed research questions relate to physical activities
(duration and intensity), types of green places, and participant
characteristics (age, sex, health status): 1. How does exercise
duration affect self-esteem and mood?; 2. How does exercise
intensity affect self-esteem and mood?; 3. How do different
green habitats (e.g., urban green space, countryside, water-
side, wilderness, woodlands) affect self-esteem and mood?
4. What are the measurable differences according to selected
participant characteristics (e.g., children, adult, elderly;
female, male)?
We thus conducted a multistudy analysis of available data
using standardized meta-analysis methods to assess the
impact of green exercise on self-esteem and mood. This
enabled us to determine the most effective regime(s) for a
dose of acute green exercise. The recommended dose is based
on the combined benefits of both variables and does not
assess the separate contributions of nature and physical
activity on mental health.
Materials and Methods
Study Selection. Ten studies undertaken by the University
of Essex over the past six years were selected for inclusion.
The multistudy analysis was limited to these studies because
all used identical measurement tools to analyze changes in
self-esteem and mood after an acute exposure to green
exercise. However, to ensure validity of the overall analysis
standardized meta-analysis methods were used.
Self-esteem and mood measures were chosen as they are
state measures and can be easily manipulated in the short
term. They are also early indicators of long-term disease risk
and have implications for health behaviors, motivations, and
lifestyle choices. None of the studies used randomized
controlled trials or incorporated control groups where
participants were exposed to nature without exercising or
exercised in nongreen environments. All 1252 participants
were self-selecting using an opportunistic sampling meth-
odology and took part only in one study. We had full access
to all primary data, including pre- and post- mean values,
sample sizes, paired groups t-value, effect directions and
information on the nature of the intervention, participants
and location type (Table 1). This study does not therefore
include a large variety of studies from different research
groups.
Self-Esteem and Mood Measures. The Rosenberg Self-
Esteem Scale (RSE) is the most widely used and popular
self-esteem measure (45, 46). Many researchers regard the
scale as the standard against which other measures of self-
esteem should be compared. In all of the studies self-esteem
was measured immediately pre- and postactivity or inter-
vention using the one-page 10-item RSE scale.
The instrument used to quantify changes in mood was
the Profile of Mood States (POMS) standardized short-form
(47). POMS is the primary instrument for measuring mood
in studies of mood states and exercise (48, 49). Measurements
were taken in all these studies immediately pre- and
postactivity or intervention.
Statistical Analysis. Standardised meta-analysis meth-
odologies were used to assess changes in self-esteem and
mood data pre- and post- green exercise interventions.
Summary statistics represented the mean difference between
the pre- and postintervention values for both self-esteem
and total mood disturbance (TMD) (46, 47). The Compre-
hensive Meta-Analysis Version 2.0 was used for analysis. Data
were pooled to calculate an overall intervention effect
estimate. This represents the weighted average of the
combined individual intervention effects and the inverse-
variance method was used to assign weights to each study.
Thus, larger studies with smaller standard errors were given
more weight than smaller studies with larger standard errors.
This reduced the imprecision of the pooled-effect estimate.
It was assumed that the various studies involved in the
analysis were measuring different but related intervention
effects, and thus the combined intervention effect estimates
were calculated using a random-effects model meta-analysis
(50, 51). A funnel plot of precision and the “trim and fill” output
was used to inspect bias, and 95% confidence intervals were
calculated on the basis of the standard error of the pooled
intervention effect. Statistical significance was set at p<0.05.
TABLE 1.Descriptive Data on the Green Exercise Interventions Included in the Meta-Analysis
a
project
number
no.
participants type of activities type of environments cohort
1 256 cycling, gardening,
walking, fishing, boating,
horse-riding
countryside/farmland, forest
and woodland, urban green,
waterside
individuals choosing to
engage in GE activities
2 153 walking countryside/farmland, forest
and woodland, wild habitats
individuals at NT sites
3 38 farming activities countryside/farmland visitors to care farms
4 11 gardening forest and woodland students
5 57 walking countryside/farmland, forest
and woodland, waterside, wild
habitats
members of local mind
association
6 86 walking forest and woodland individuals choosing to
engage in GE activities
7 447 walking urban green individuals at urban flower
show
8 59 farming activities countryside/farmland visitors to care farms
9 10 walking, water based (sailing) wild habitats, waterside young offenders
10 135 gardening urban green individuals responsible for
allotments
a
Note: These studies were conducted with (1) Countryside Recreation Network, (2) National Trust, (3) National Care
Farming Initiative, (4) University of Essex, (5) Mind, (6) Highwoods Country Park, (7) Royal Horticultural Society, (8) LEAF,
(9) Wilderness Foundation, and (10) local allotment societies.
3948 9ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 10, 2010
A statistical test for within-group heterogeneity assessed whether
observed differences were due to chance alone. The chi-squared
Q statistic was calculated using Q/(k-1), where k is the number
of studies in the meta-analysis (52). The I2statistic was calculated
using both Q statistic and degrees of freedom (53).
To investigate whether the intervention effect varied with
differing cohorts, type of green space, exposure duration or
exercise intensity, a series of predefined a priori subgroup
analyses were conducted. This allowed the exploration of
possible sources of heterogeneity by identifying modifiers.
Selection was based on causal mechanisms, magnitude of
effects and statistical significance (54). In accordance with
recommendations, all subgroup analyses were justified by
existing knowledge of the relationship between green exercise
and self-esteem/mood. The subgroup analyses identified
were 1. exposure duration: 5 min, 10-60 min, half-day, whole
day; 2. exercise intensity: low (<3 METs (metabolic equiva-
lent)), moderate (3-6 METs-) and vigorous (>6 METs) (55);
3. type of green space: urban green, countryside/farmland,
forest/woodland, waterside, and wilderness-type habitats;
4. gender: female or male; 5. age groups: <30 years, 31-50,
51-70, and >70 years of age; 6. starting health status: healthy
or with existing mental health problems.
Results
Effect of Green Exercise. The multistudy analysis of differ-
ences in self-esteem and mood before and after green exercise
are shown in Figures 1a and b. The overall effect size for
change in self-esteem was d)0.46 (CI 0.34-0.59, p<0.00001)
and significant heterogeneity was found between estimates
of self-esteem (Q)29.83, p<0.00001). The overall effect size
for change in TMD was d)0.54 (CI 0.38-0.69, p<0.00001)
and again there was significant heterogeneity for TMD (Q)
45.95, p<0.00001). Effect size was thus higher for mood than
self-esteem. These changes represented improvements in
both self-esteem and mood. Based on the heterogeneity
findings six subgroup analyses were conducted.
Figure 2a and b illustrate dose-responses for duration of
exposure: both self-esteem and mood show distinct U shapes.
Greatest changes come from 5 min of activity, and thus
suggest these psychological measures are immediately
increased by green exercise. The changes are lower for 10-60
min and half-day, but rise again for the whole day duration.
Figure 3a and b show dose-responses for exercise intensity.
For self-esteem, the greatest change is for light activity and
then declines with growing intensity. For mood, the response
is again greatest for light intensity, declining to the lowest
for moderate, and then rises again for vigorous activity.
Figure 4a and b show effect sizes for five categories of
habitat or green space. There are no great differences for
urban space, countryside and woodland habitats. For both
measures, waterside habitats showed the greatest changes.
Green places improve self-esteem and mood (mean of d
FIGURE 1. a and b. Meta-analysis of studies showing effect sizes and 95% CIs for changes in self-esteem and TMD after
participation in green exercise activities (change in self-esteem was calculated as the difference between the pre and
postintervention scores).
VOL. 44, NO. 10, 2010 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 93949
values 0.44 and 0.56); however, green spaces with water shows
a larger difference (increase of 0.29 for self-esteem and 0.19
for mood).
Table 2 shows the results where there are binary groups
(male or female; healthy or mentally ill). All subgroup analyses
reported significant improvements in self-esteem and mood,
with effect sizes ranging from 0.38 (small) to 0.68 (moderate-
large). Changes in self-esteem and mood were similar for
both men and women. Healthy participants showed a smaller
change in self-esteem than those with self-declared mental
health problems (d)0.41 compared with d)0.68, p<0.0001),
though there was only a small difference for mood (d)0.53
compared with d)0.56). Table 2 shows significant within-
group heterogeneity based on starting health status (both
mood and self-esteem) and sex (mood only).
Figure 5a and b show the effect sizes over four age groups
(<30, 31-50, 51-70, and >70 years). The improvement in
self-esteem declines with aging (the greatest change is for
the youngest age group), whereas mood shows an inverted
U-curve with greatest changes in the midage groups.
Discussion
The results show acute short-term exposures to facilitated
green exercise improves both self-esteem and mood ir-
respective of duration, intensity, location, gender, age, and
health status. The six subgroup analyses suggest important
specific recommendations for the most effective dose of
nature and green exercise. 1. Exposure duration: both self-
esteem and mood showed greatest changes for the least
duration (5 min), both showed smaller positive improvements
for <1 h and half-day activities, and both increased for whole-
day activities. This suggests that there is an immediate effect
obtained from the start of green exercise. Whole-day activities
are likely to be qualitatively different activities, involving in
some cases camping overnight and in others significant
conservation achievements. 2. Exercise intensity: self-esteem
improvements declined with growing intensity of activity,
and mood improvements were greatest for light and vigorous
activity. This suggests that there is a health benefit from any
short engagement in green exercise. 3. Type of green space:
all green environments improved both self-esteem and mood;
the presence of water generated greater improvements.
Although participants should be encouraged to undertake
outdoor activities in both rural and urban environments,
spending time near waterside (e.g., beach or river) or
participating in water-based activities may give a greater
benefit. 4. Sex: both men and women reported similar
improvements in self-esteem after green exercise, though
men showed a difference for mood. 5. Age groups: for self-
esteem, the greatest change was in the youngest category,
FIGURE 2. a: Dose response data for the effect of exposure duration on self-esteem. b: Dose response data for the effect of exposure
duration on TMD.
3950 9ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 10, 2010
with diminishing effects with age; for mood, the least change
was for the young and old. This suggests that younger people
will see more self-esteem improvements, and the middle-
aged from mood. The over-70 age group experienced the
least change, perhaps because those sampled were already
experiencing good mental health and further improvements
were limited. 6. Starting health status: the mentally ill had
one of the greatest changes for self-esteem improvements.
This suggests that the mentally ill should be encouraged to
undertake green exercise.
Exposure to nature via green exercise can thus be
conceived of as a readily available therapy with no obvious
side effects (56). These findings indicate that dose responses
for both intensity and duration showed large benefits from
short engagements in green exercise, and then diminishing
but still positive returns. The findings also suggest that those
who are currently sedentary, nonactive, and/or mentally
unwell would accrue health benefits if they were able to
undertake regular, short-duration physical activity in ac-
cessible (probably nearby) green space. Such doses of nature
will contribute to immediate mental health benefits. As with
smoking, giving up inactivity and urban-only living results
in immediate and positive health outcomes, even from short-
duration and light activity such as walking. The findings from
this multistudy analysis suggest the need to undertake larger-
scale and randomized studies of different cohorts over long
time-frames to explore the dose of green exercise further.
All studies included in this multistudy analysis involve
exercise in green environments. The combined benefits are
thus assessed but the relative contributions of each com-
ponent are still unknown. Thus, there is also a need for a
field-based controlled study to analyze the benefits of each
element and assess whether there are any synergistic
outcomes. This has been demonstrated in a controlled
laboratory environment involving simulated green exercise
(12), but evidence is limited in the field. Overall mood effect
sizes for green exercise in this study are slightly larger (d)
0.54) compared with exercise in nongreen environments (d
)0.49) reported in other studies (57), although future research
is still needed to compare different exercising environments.
The findings here are based on short-term exposures to
single interventions. There remains a need for longitudinal
multicohort studies to track changes over time. Important
questions remain on how long the enhanced mood lasts once
activity has finished, and whether there are accumulative
effects following repeat exposures. The findings comprise
studies conducted by one University; thus once other national
data becomes available future meta-analyses will be more
cross-sectional. The 10 studies were also analyzed over a
period of six years, so self-esteem and mood may have been
manipulated by extraneous variables which could not be
controlled for. However, the outcomes do suggest a new
priority for frontline environmental and health professionalss
a regime of doses of nature may be prescribed for anyone,
but will have a greater effect for the inactive or stressed and
mentally ill, or at presurgery (58) or for recovery (59).
Employers, for example, could encourage staff in stressful
workplaces to take a short walk at lunchtime in the nearest
FIGURE 3. a: Dose response data for the effect of exercise intensity on self-esteem. b: Dose response data for the effect of exercise
intensity on TMD.
VOL. 44, NO. 10, 2010 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 93951
park to improve mental health, which may in turn affect
productivity (60).A particular focus should be on children:
regular outdoor play brings immediate health benefits, and
may instill healthy behaviors early in life (61). Childhood
social and economic conditions also predict adult health
status (62), and outdoor free-play is vital for development
and cognitive skills (63, 64). Given the therapeutic affects of
green exercise (65), youth offender teams should engage
certain groups of young people more in outdoor programs.
Health inequalities could be reduced if attention were also
given to the importance of urban design for both private
dwellings and public institutions such as schools, care homes
and hospitals (14).
Although good self-esteem and mood are known to be
protective against future long-term health threats, these
mental health measures should also be assessed in conjunc-
tion with a range of further health markers, such as blood
pressure, cholesterol, stress hormones (e.g., cortisol), and
inflammatory markers (e.g., C-RP). This research has not
assessed the benefits of undertaking activities with other
people (the benefits of social capital), nor the benefits of
connections with animals (28, 66). It also does not assess
how short-term changes to self-esteem and mood could lead
to long-term changes in knowledge and behavior, such as
the possible conservation benefits arising from more people
engaging in outdoor activity, and therefore coming to know
FIGURE 4. a: The effect of typology of green space on self-esteem. b: The effect of typology of green space on TMD.
TABLE 2.Summary of Effect Sizes for Two Sub-Groups Where These Are Divided into Only Two Categories (Gender and Health
Status)
heterogeneity
sub-group measure category dvalue 95% CI P N Q P
sex
self-esteem
female 0.38 0.23 -0.54 <0.0001 363 14.52 0.07
male 0.42 0.32 -0.53 <0.0001 377 7.82 0.45
combined 0.41 0.33 -0.50 <0.0001 740 23.40 0.14
mood
female 0.49 0.33 -0.64 <0.0001 408 15.00 0.06
male 0.55 0.25 -0.85 <0.0001 387 42.48 <0.0001
combined 0.50 0.36 -0.64 <0.0001 795 58.45 <0.0001
starting health status
self-esteem
healthy 0.41 0.28 -0.55 <0.0001 1076 22.13 <0.001
mental ill-health 0.68 0.42 -0.94 <0.0001 105 2.73 0.26
combined 0.46 0.40 -0.52 <0.0001 1181 29.83 <0.0001
mood
healthy 0.53 0.34 -0.71 <0.0001 1146 40.52 <0.0001
mental ill-health 0.56 0.19 -0.93 0.003 99 4.99 0.08
combined 0.53 0.37 -0.70 <0.0001 1245 45.95 <0.0001
3952 9ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 10, 2010
more about natural habitats, and whether such engagements
with nature could lead to changes in food consumption
behavior. Contact with nature might thus promote more pro-
environmental behavior and attitudes.
This study using meta-analysis methods suggests that
attention should be given to developing the use of green
exercise as a therapeutic intervention (green care), that
planners and architects should improve access to green space
(green design), and that children should be given opportuni-
ties to learn in outdoor settings (green education). Some of
the substantial mental health challenges facing society (9, 60)
and physical challenges arising from modern diets and
sedentary lifestyles (8, 67, 68) could be addressed by increased
forms of activity in green places.
A challenge for policy makers is that policy recom-
mendations on physical activity are easily stated but rarely
adopted widely. The economic benefits are hard to calculate,
though could be substantial (42, 67). Policy frameworks that
suggest active living (69, 70) point to the need for changes
to physical, social and natural environments, and are more
likely to be effective if physical activity becomes an inevitable
part of life rather than a matter of daily choice (71). Simple
prescriptions are unlikely to be adopted by whole populations
unless supported by shifts in urban design, transport policy,
support for social care, parenting, and patients’ expectations
of their doctors. Accessing natural places for their health as
well as environmental services may aid these transitions.
Acknowledgments
We are grateful to Gavin Sandercock for suggestions on the
methods for meta-analysis, to Rachel Hine, Jo Roberts,
Murray Griffin, Marion Nolan-Ericsson, Graeme Willis, and
Sarah Pilgrim for some of the primary data collection in the
analysed studies, and to four referees for helpful comments
on an earlier version of this paper. We report that there are
no conflicts of interest.
Supporting Information Available
A brief summary of the instruments used to measure self-
esteem (Rosenberg Self-Esteem Scale) and mood (Profile of
Mood States). This material is available free of charge via the
Internet at http://pubs.acs.org.
Literature Cited
(1) Millennium Ecosystem Assessment. Ecosystems and Human
Well-Being; Island Press: Washington DC, 2006.
(2) Weber, J. L. Implementation of land and ecosystem accounts
at the European Environment Agency. Ecol. Econ. 2007,61,
695–707.
(3) Centers for Disease Control and Prevention. Physical Activity
and Health; Report of Surgeon General: Washington DC,1996.
FIGURE 5. a: The effect of age on self-esteem. b: The effect of age on TMD.
VOL. 44, NO. 10, 2010 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 93953
(4) Be Active and Healthy. A Plan for Getting the Nation Moving;
Department of Health: London, 2009.
(5) WHO.World Health Report; World Health Organisation: Geneva,
2004.
(6) Davis, A.; Valsecchi, C.; Fergusson, M. Unfit for Purpose: How
Car Use Fuels Climate Change and Obesity; IEEP: London, 2007.
(7) Dobbins M.; De Corby, K.; Robeson, P.; Husson, H.; Tirilis, D.
School-based physical activity programs for promoting physical
activity and fitness in children and adolescents aged 6-18,
Cochrane Database Systematic Reviews 2009; Jan 21;(1):
CD007651.
(8) Healthy Lives, Brighter Futures: The Strategy for Children and
Young People’s Health; Department for Children, Schools and
Families/Department of Health: London, 2009.
(9) Foresight.Mental Health - Future Challenge; Government Office
of Science: London, 2008.
(10) Lim, K.; Taylor, L. Factors associated with physical activity among
older people - a population-based study. Prev. Med. 2005,40
(1), 33–40.
(11) Hartig, T.; Evans, G.; Jamner, L. D.; Davis, D. S.; Garling, T.
Tracking restoration in natural and urban field settings. J.
Environ. Psych 2003,23, 109–23.
(12) Pretty, J.; Peacock, J.; Sellens, M.; Griffin, M. The mental and
physical health outcomes of green exercise. Int. J. Environ. Health
Res. 2005,15 (5), 319–37.
(13) Ulrich, R. S. View through a window may influence recovery
from surgery. Science 1984,224, 420–1.
(14) Mitchell, R.; Popham, F. Effect of exposure to natural environ-
ment on health inequalities: An observational population study.
Lancet 2008,372, 1655–60.
(15) Takano, T.; Nakamura, K.; Watanabe, M. Urban residential
environments and senior citizens’ longevity in megacity areas:
the importance of walkable green spaces. J. Epidemiol. Commun.
Health 2002,56, 913–18.
(16) UNFPA. State of the World Population 2007: Unleashing the
Potential of Urban Growth; United Nations Population Fund:
New York, 2007.
(17) Chiesura, A. The role of urban parks for the sustainable city.
Landscape Urban Plann. 2004,68, 129–138.
(18) Maas,J.; Verheij, R. A.; De Vries, S.; Spreeuwenberg, P.; Schellevis,
F. G.; Groenewegen, P. P. Morbidity is related to a green living
environment. J. Epidemiol. Commun. Health 2009,63, 967–73.
(19) Centers for Disease Control and Prevention. Physical Activity
and Health; Report of Surgeon General: Washington DC, 1996.
(20) Foresight. Tackling Obesities - Future Choices; Government Office
of Science: London, 2007.
(21) Wells, N. M.; Ashdown, S.; Davies, E. H. S.; Cowett, F. D.; Yang,
Y. Environment, design and obesity. Environ. Behav. 2007,39
(1), 6–33.
(22) Hartig, T.; Mang, M.; Evans, G. W. Restorative effects of natural
environment experiences. Environ. Behav. 1991,23 (1), 3–26.
(23) Ulrich, R. S.; Simons, R. F.; Losito, B. D.; Fiorito, E.; Miles, M. A.;
Zelson, M. Stress recovery during exposure to natural and urban
environments. J. Environ. Psych. 1991,11 (3), 201–230.
(24) Ecotherapy: The Green Agenda for Mental Health; Mind: London,
2007.
(25) Pretty, J.; Peacock, J.; Hine, R.; Sellens, M.; South, N.; Griffin,
M. Green exercise in the UK countryside: effects on health and
psychological well-being and implications for policy and
planning. J. Environ. Plann. Manage. 2007,50 (2), 211–31.
(26) Van den Berg, A. E.; Koole, S. L.; Van der Wulp, N. Y.
Environmental preference and restoration: (How) are they
related. J. Environ. Psych. 2003,23 (2), 135–146.
(27) Pilgrim, S.; Smith, D.; Pretty, J. A cross-regional assessment of
the factors affecting ecoliteracy: implications for policy and
practice. Ecol. Appl. 2007,17 (6), 1742–51.
(28) Pretty, J. The Earth Only Endures: On Reconnecting with Nature
and Our Place in It.; Earthscan: London, 2007.
(29) Kawachi,I.; Kennedy, B.; Lochner, K.; Prothrow-Smith, D. Social
capital, income inequality and mortality. Am. J. Public Health
1997,87, 1491–98.
(30) Kuo,F. E.; Sullivan, W. C.; Coley, R. L.; Brunson, L. Fertile ground
for community: inner-city neighbourhood common spaces.
Am. J. Commun. Psych. 1998,26 (6), 823–51.
(31) Maas, J.; Verheij, R. A.; Groenewegen, P. P.; De Vries, S.;
Spreeuwenberg, P. Green space, urbanity, and health: how
strong is the relation. J. Epidemiol. Commun. Health 2006,60,
587–92.
(32) Matthews, H. S.; Lave, L. B. Applications of environmental
valuation for determining externality costs. Environ. Sci. Technol.
2000,34, 1390–95.
(33) Pretty, J. N.; Mason, C. F.; Nedwell, D. B.; Hine, R. E. The
environmental damage costs of eutrophication of fresh waters
in England and Wales. Environ. Sci. Technol. 2003,37 (2), 201–
208.
(34) Bird, W. Natural thinking: Investigating the links between the
Natural Environment, Biodiversity and Mental Health; Royal
Society for the Protection of Birds: Bedfordshire, UK, 2007.
(35) Blascovich, J.; Tomaka, J. Measures of self-esteem. In Measures
of Personality and Social Psychological Attitudes, Vol I; Robinson,
J., et al., Eds.; Academic Press: San Diego, CA, 1991.
(36) Bernard, L. C.; Hutchison, S.; Lavin, A.; Pennington, P. Ego-
strength, hardiness, self-esteem, self-efficacy, optimism, and
maladjustment. Assessment 1996,3(2), 115–31.
(37) Torres, R.; Fernandez, F. Self-esteem and the value of health as
determinants of adolescent health behaviour. J. Adolesc. Health
Care 1995,16, 60–3.
(38) Hull, R.B. Mood as a product of leisure: Causes and conse-
quences. In Benefits of Leisure; Driver, B. L.; Brown, P. J.; Peterson,
G. L. Eds.; State College PA: Venture, 1991.
(39) Berger,B.; Pargman, D.; Weinberg, R. S. Foundations of Exercise
Psychology; Fitness Information Technology: Morgantown, 2002.
(40) Flory, J. D.; Manuck, S. B.; Matthews, K. A.; Muldoon, M. F.
Serotonergic function in CNS as associated with daily ratings
of positive mood. Psychiatry Res. 2004,29, 11–19.
(41) Thayer, R. E.; Newman, J. R.; McClain, T. M. Self-regulation of
mood: Strategies for changing a bad mood, raising energy, and
reducing tension. J. Pers. Social Psychcol. 1994,67, 910–25.
(42) Bockstael, N. E.; Freeman, A. M.; Kopp, R. J.; Portney, P. R.;
Smith, V. K. On measuring economic values for nature. Environ.
Sci. Technol. 2000,34, 1384–1389.
(43) Hammit, J. K. Valuing mortality risk: theory and practice. Environ.
Sci. Technol. 2000,34, 1396–1400.
(44) Barton, J.; Hine, R.; Pretty, J. The health benefits of walking in
greenspaces of high natural and heritage value. J Integr. Environ
Sci. 2009,6(4), 1–18.
(45) Biddle, S. J. H.; Fox, K. R.; Boutcher, S. H. Physical Activity and
Psychological Well-Being; London: Routledge. 2001.
(46) Rosenberg, M. Society and the Adolescent Self-Image; Princeton
University Press: Princeton, NJ, 1965.
(47) McNair, D. M.; Lorr, M.; Droppleman, L. F. Revised Manual for
the Profile of Mood States; Educational and Industrial Testing
Service: San Diego, CA, 1992.
(48) LeUnes, A. Updated bibliography on the Profile of Mood States
in sport and exercise psychology research. J. Appl. Sport Psychol.
2000,12, 110–13.
(49) Biddle, S. J. H. Emotion, mood and physical activity. In Physical
Activity and Psychological Well-Being Biddle, S. J. H.; Fox, K. R.;
Boutcher, S. H., Eds.; Routledge: London, 2000; pp 63-87.
(50) DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control
Clin Trials 1986,7, 177–88.
(51) Deeks,J.; Higgins, J.; Altman, D. Analysing data and undertaking
meta-analyses. In Cochrane Handbook for Systematic Reviews
of Interventions 5.0.1 (updated Sept 2008); Higgins, J., Green, S.,
Eds.; The Cochrane Collaboration: London, 2008.
(52) NHMRC. How to Review the Evidence: Systematic Identification
and Review of the Scientific Literature; National Health and
Medical Research Council: Canberra, 2000.
(53) Higgins, J.; Thompson, S.; Deeks, J.; Altman, D. Statistical
heterogeneity in systematic reviews of clinical trials. J. Health
Serv. Res. Policy 2002,7(1), 51–61.
(54) Oxman,A.; Guyatt, G. A consumer’s guide to subgroup analyses.
Annals Intern. Med. 1992,116, 78–84.
(55) Haskell, W. L.; Lee, I. M.; Pate, R. R.; Powell, K. E.; Blair, S. N.;
Franklin, B. A.; Macera, C. A.; Heath, G. W.; Thompson, P. D.;
Bauman, A. Physical activity and public health. Med. Sci. Sports
Exercise 2007, 1423–34.
(56) Berman, M. G.; Jonides, J.; Kaplan, S. The cognitive benefits of
interacting with nature. Psychol. Sci. 2008,19 (12), 1207–12.
(57) Szabo, A. Acute psychological benefits of exercise performed at
self-selected workloads: implications for theory and practice.
J. Sports Sci.Med. 2003,2, 77–87.
(58) Diette, G. B.; Lechtzin, N.; Haponik, E.; Devrotes, A.; Rubin,
H. R. Distraction therapy with nature sights and sounds reduces
pain during flexible bronchoscopy. Chest J. 2003,123, 941–48.
(59) Pierce, J.; Stefanick, M.; Flatt, S.; Natarajan, L.; Sternfield, B.;
Madlensky, L.; Al-Delaimy, W.; Thomson, C.; Kealey, S.; Hajek,
R.; et al. Greater survival after breast cancer in physically-active
women with high vegetable-fruit intake regardless of obesity.
J. Clin. Oncol. 2007,25, 2345–51.
(60) HSE. Self-Reported Work-Related Stress and Workplace Injuries
in 2006-07; National Statistics: London, 2008.
3954 9ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 10, 2010
(61) WardThompson, C.; Aspinall, P.; Montarzino, A. The childhood
factor: adult visits to green places and the significance of
childhood experience. Environ. Behav. 2008,40 (1), 111–43.
(62) Wells, N. M.; Lekies, K. S. Nature and the life course: pathways
from adulthood nature experience to adult environmentalism.
Children Youth Environ. 2006,16 (1), 1–24.
(63) Burdette, H. L.; Whitaker, R. C. Resurrecting free play in young
children: looking beyond fitness and fatness to attention,
affiliation and affect. Arch. Pediatr. Adolesc. Med. 2005,159,
46–50.
(64) Learning Outside the Classroom; Ofsted: London, 2008.
(65) Hartig, T. Green space, psychological restoration and health
inequality. Lancet 2008,372, 1614–15.
(66) Brugha, T. S.; Morgan, Z.; Bebbington, P.; Jenkins, R.; Lewis, G.;
Farrell, M.; Meltzer, H. Social support networks and type of
neurotic symptom among adults in British households. Psychol.
Med. 2003,33, 307–18.
(67) Promoting Physical Activity for Children and Young People;
National Institute for Clinical Excellence: London, 2009.
(68) Wanless, D. Securing Our Future Health: Taking a Long-Term
View; Department of Health: London, 2002.
(69) Sallis, J. F.; Cervero, R. B.; Ascher, W.; Henderson, K. A.; Kraft,
M. K.; Kerr, J. An ecological approach to creating active living
communities. Annu. Rev. Public Health 2006,27 (1), 297–322.
(70) Our Natural Health Service; Natural England: Peterborough,
2009.
(71) Matson-Koffman, D.; Brownstein, J.; Neiner, J.; Greaney, M. A
site-specific literature review of policy and environmental
interventions that promote physical activity and nutrition for
cardiovascular health; what works. Am. J. Health Promotion
2005,19, 167–93.
ES903183R
VOL. 44, NO. 10, 2010 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 93955
... Self-esteem is therefore a key concept in both short and long-term mental health (Barton & Pretty, 2010). For this reason, it seems particularly interesting to work on tools that can improve people's self-esteem. ...
... In this sense, contact with nature could be an appropriate solution. Barton and Pretty (2010) explain that it is recommended that self-esteem be employed as a standard measure for evaluating the impact of exposures to nature-based interventions. None of the aforementioned theories explicitly addresses the direct impact of exposure to nature on self-esteem. ...
... This study was conducted with the objective of addressing several gaps in the existing literature, particularly the notable absence of research examining the impact of nature on self-esteem, which is a crucial aspect of psychological well-being. Furthermore, the existing studies that have explored the effects of nature on self-esteem have primarily focused on in vivo exposures combined with physical activity (Barton & Pretty, 2010). The objective is to conduct research based on the utilization of substitutes in order to develop instruments based on exposure to nature, which are capable of assisting individuals with motor difficulties or those who are unable to access natural environments directly. ...
Article
Full-text available
It is widely acknowledged that exposure to natural environments offers emotional, cognitive, and behavioural benefits. However, some individuals may face difficulties in accessing these areas frequently and conveniently due to urbanisation, disability, or a lack of time. As a result, research has explored the advantages of nature substitutes, such as photographs, videos, or virtual reality (VR), and has demonstrated their ability to provide psychological benefits. Therefore, our study aims to examine the impact of these substitutes on enhancing individuals’ self-esteem. The study involved 236 participants, who were divided into six experimental groups based on the type of exposure (photographs, video, or virtual reality) and the environment (natural or urban). A control group was also exposed to geometric shapes. The participants completed the French version of the Rosenberg Self-Esteem Scale three times: upon arrival at the experimental room (baseline), after the rumination induction task (post-induction), and after exposure (post-exposure). The analysis focused on changes in self-esteem scores during the experimental study, considering the type of exposure and its content. The results suggest that exposure to nature, in any form, enhances self-esteem more than exposure to urban environments or geometric shapes. Additionally, it was found that virtual reality or video exposure to nature produced greater benefits than natural photographs. In the future, alternative tools may serve as valuable support for individuals who are unable to experience direct contact with nature. However, it is important to recognise that they should be considered as supplementary options rather than exclusive substitutes.
... Also, "naturalness", a term used to identify "structural" morphological properties of our environment, has attracted particular attention; for review, see: (Bowler et al., 2010). Starting with the famous finding of improved recovery from surgery (Ulrich, 1984), natural surroundings have been shown to exert positive effects (sometimes by mere image viewing) on mood (Barton & Pretty, 2010), stress reduction (Valtchanov et al., 2010), concentration and working memory improvement (Berman et al., 2008;Berman et al., 2012;Berto, 2005;Bratman et al., 2015;Kaplan, 1995), self-perceived health (Kardan et al., 2015), self-esteem (Barton & Pretty, 2010;Pretty et al., 2007) and occurrence of criminal behavior (Kuo & Sullivan, 2001a, 2001b. ...
... Also, "naturalness", a term used to identify "structural" morphological properties of our environment, has attracted particular attention; for review, see: (Bowler et al., 2010). Starting with the famous finding of improved recovery from surgery (Ulrich, 1984), natural surroundings have been shown to exert positive effects (sometimes by mere image viewing) on mood (Barton & Pretty, 2010), stress reduction (Valtchanov et al., 2010), concentration and working memory improvement (Berman et al., 2008;Berman et al., 2012;Berto, 2005;Bratman et al., 2015;Kaplan, 1995), self-perceived health (Kardan et al., 2015), self-esteem (Barton & Pretty, 2010;Pretty et al., 2007) and occurrence of criminal behavior (Kuo & Sullivan, 2001a, 2001b. ...
Chapter
Biometrics is the collection, measurement, and analysis of both physical and behavioral attributes in individuals. While the evaluation of physical traits is commonly employed for authentication purposes, the investigation of quantifiable behavioral characteristics is utilized to observe and measure how individuals react to their environment. Depending on the focus of a study, there may also be a gathering of valence data to be correlated with the physical response data. Biometric measurements can serve as a solid foundation for architects and designers to make data-driven decisions throughout the design process. In cases involving existing structures, biometric data can be applied for post-occupancy analysis, in conjunction with standard methods.
... First, our study focused on UGS visitor health responses, which may be influenced by several determinants more than just perceptions towards microenvironments. Experience time with UGS was not considered a fixed factor in our study, but a longer time spent on exposure to UGS would be more effective in obtaining health recovery [98,99]. Variations in the aims and motivations of human activities carried out in UGS can also lead to unknown errors in health benefits [100]. ...
Article
Full-text available
Outdoor thermal comfort (OTC) is one of the most important issues for people exposed to urban green space (UGS). It is mainly evaluated by assessing equivalent meteorological factors that may combine and result in human responses of perceptions about comfortable vs. uncomfortable environments. The assessment of these responses is challenged by limits in a database that is powerful enough to support big-data analysis and an essential parameter that can evaluate health-related responses to OTC in urban forests. In this study, a meta-analysis was conducted by synthesizing studies of physiological and psychological health responses of green space (GS) visitors to meteorological factors in host cities on a global scale. A total of 15,000 numerical records about the psychological and physiological responses of UGS visitors were obtained from 105 papers across 68 global cities in 21 countries. A novel parameterization was developed to evaluate OTC by normalizing changes in health-related parameters and detecting their regressions against multiple meteorological factors. It was revealed that OTC resulted in more benefits in psychological health parameters than in physiological ones for UGS visitors worldwide. Globally, health-promoting OTC environments were more found in temperate countries than in countries subjected to other climates. People in Asian countries were indicated to live in environments with higher comfort that benefitted health states in cities at low latitudes. Thermal environments tended to be harsher and more challenging, mostly too chilling, in northern cities than in the south globally. A deep learning model using the ResNet algorithm was found to perform to an expected level with R2 as high as >70% and errors controlled generally lower than 0.01. Taking mainland China for instance, it was predicted that thermal environments in eastern cities of China highly challenged the psychological health of local UGS visitors across all seasons of the year. Northern cities of China were predicted to have satisfied thermal environments that benefited psychological and psychological health responses in spring. In summer, cities in West China were predicted to have comfortable thermal environments, and in winter, environments in the southwestern cities were more comfortable.
... During the environmental exposure phase, the participant rested for 5 min while looking ahead. A minimum of 5 min of nature-related activities was suggested to yield positive psychological outcomes [56], while participants may feel bored [57] and results may be interfered with if longer than 5 min. In the end, the participant filled out the 3rd VAS and performed the 3rd SART. ...
Article
Full-text available
Contact with nature is believed to enhance mental health through the process of human psychological restoration. However, prolonged indoor living limits individuals’ exposure to nature, potentially hindering the timely alleviation of stress and fatigue induced by work. While biophilic design is recognized as a potential solution, its impact on the restoration process has not been extensively studied, particularly in relation to its various design patterns. Therefore, it is important to determine the restorative effects of different patterns of biophilic design and their combination in order to guide the practical application of biophilic design. In this study, the effects of two typical biophilic design patterns and their combination on attention restoration were measured using subjective scales, cognitive tasks, and functional near-infrared spectroscopy (fNIRS) in a simulated real workspace. The results suggest a significant enhancement in the restorative impact on cognitive performance and physiological benefits when combining two biophilic design patterns, while a single design pattern does not yield the same effect. These findings contribute to a better understanding and improvement of workspaces, enhancing users’ experience and well-being.
... There might be a synergy between the psychological benefits of physical activity and the restorative effects (i.e., reduced stress, increased well-being) of contact with a natural environment [21,22,24]. Exercise outdoors in water (compared to out of water) produced greater improvements in self-esteem and mood, potentially protective against future long-term health threats [25]. ...
Article
Full-text available
Background Surf therapy is gaining popularity for improving mental health. However, there is limited research evidence to substantiate these claims. Therefore, this systematic review aimed to assess randomized or non-randomized studies analyzing the efficacy of surf therapy in improving symptoms of mental illness compared to non-exercising controls and/or alternative intervention, and to identify evidential gaps to inform future research. Methods PRISMA 2020 reporting guidelines were followed. Eligibility criteria included participants of any age and sex, explicitly diagnosed with any mental health disorder, while exposed to surf therapy and compared to non-exercising controls and/or alternative interventions. The primary outcome consisted of changes in symptoms of mental illness scored from baseline to post-intervention. Any randomized or non-randomized trial design was considered. We searched Cochrane Library, CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus and Web of Science databases (December 7, 2023), without language or publication date restrictions and without filters. Risk of bias was assessed using RoB 2. A meta-analysis could not be conducted due to heterogeneity of the studies; therefore, a narrative synthesis of individual study results was performed. Results Of 5,666 records, three randomized controlled studies were included in the review. Overall, the findings of the three studies suggest no robust consistent evidence of improvement in mental health symptoms when comparing surf therapy to wait-list control groups or other nature-based exercise interventions (hike therapy). Certainty of evidence should be considered very low, as it is based on three randomized controlled trials. Conclusion Although we believe that surf therapy provides an interesting approach, robust evidence is scarce. Routes for future well-designed, controlled studies are discussed. Other No funding to report. Registration: PROSPERO CRD42021277060.
Article
Rapid urbanization has led to the urban heat island effect (UHI), exacerbating cities’ extreme temperatures and air pollution, thereby threatening residents’ well-being. To address this issue, many countries are utilizing green infrastructure to improve urban walking environments, promote walking, mitigate climate change, and reduce the impact of UHI. However, pedestrian landscape design often overlooks residents’ emotional needs and experiences. Biophilic Design (BD) offers a solution by promoting positive interactions between people and nature in urban environments, enhancing residents’ emotional connection with nature. This paper, focusing on densely populated and highly urbanized China, employs systematic literature review and text analysis methods to summarize affective experiential (AE) factors that positively influence residents’ walking intentions and corresponding environmental and landscape features. Based on this, a preliminary framework for applying Biophilic Design in urban pedestrian environments is proposed, aiming to provide scientific guidance for developing Biophilic Pedestrian Landscape Design (BPLD) schemes to enhance residents’ willingness to walk. Although specific guidelines for implementing biophilic walking landscapes in urban environments are lacking, their potential to improve urban livability and residents’ well-being is evident.
Article
Full-text available
Recognition of the health benefits of nature contact has increased. Simultaneously, growing numbers of people worldwide experience loneliness. There is a movement towards prescribing nature-based activities to improve/promote social connections, health, and quality of life. Yet, what constitutes a therapeutic nature dose is not well understood, due in part, to the lack of instruments that capture the characteristics of nature-based activities and measure ‘nature dose.’ We created a nature dose measurement tool to fill this gap by capturing various aspects of contact with nature and perceptions regarding park access, quality, naturalness, psychological distance to nature, and biodiversity. This tool will facilitate greater understanding of how natural areas, nature-based activities, and nature exposure reduce loneliness and promote health-related quality of life. Measuring nature dose with standardized tools and documenting benefits will generate the evidence base needed to design, implement and evaluate nature-based social interventions for improving health and quality of life. • This tool captures the nature dose to reduce loneliness and promote quality of life. • Constructs range from park quality and access, to mood, to biodiversity perceptions. • The standardized nature dose tool will help design nature-based social interventions.
Article
Full-text available
has always been a central consideration of urban planning. The premise of municipal (upheld by the US Supreme Court under Village of
Article
Full-text available
This article presents a framework for considering the relevance of the physical environment to obesity. The authors adopt the notion that the “environment” constitutes the space outside the person and therefore broaden the common conceptualization of the “environment” to encompass a full spectrum from small-scale design elements to large-scale community infrastructure. An energy balance approach is also adopted. The energy balance perspective recognizes the equilibrium of food consumption and energy expenditure, rather than focusing solely on one or the other side of the equation. The authors consider how environmental characteristics present either barriers (that hinder), or supports (that promote) healthy habits. Thus, they describe a range of obesity-related environmental themes that provide opportunities for innovative collaborative research between environmental psychologists and colleagues in fields ranging from apparel design to landscape architecture. Last, conceptual and methodological considerations are briefly presented.
Article
Full-text available
This paper examines connections between childhood involvement with the natural environment and adult environmentalism from a life course perspective. Approximately 2,000 adults age 18-90 living in urban areas throughout the United States were interviewed with respect to their childhood nature experiences and their current, adult attitudes and behaviors relating to the environment. Model testing and cross-validation procedures using structural equation modeling suggest that childhood participation with nature may set an individual on a trajectory toward adult environmentalism. Specifically, childhood participation in "wild" nature such as hiking or playing in the woods, camping, and hunting or fishing, as well as participation with "domesticated" nature such as picking flowers or produce, planting trees or seeds, and caring for plants in childhood have a positive relationship to adult environmental attitudes. "Wild nature" participation is also positively associated with environmental behaviors while "domesticated nature" experiences are marginally related to environmental behaviors.
Chapter
This chapter describes the principles and methods used to carry out a meta-analysis for a comparison of two interventions for the main types of data encountered. A very common and simple version of the meta-analysis procedure is commonly referred to as the inverse-variance method. This approach is implemented in its most basic form in RevMan, and is used behind the scenes in many meta-analyses of both dichotomous and continuous data. Results may be expressed as count data when each participant may experience an event, and may experience it more than once. Count data may be analysed using methods for dichotomous data if the counts are dichotomized for each individual, continuous data and time-to-event data, as well as being analysed as rate data. Prediction intervals from random-effects meta-analyses are a useful device for presenting the extent of between-study variation. Sensitivity analyses should be used to examine whether overall findings are robust to potentially influential decisions.