Metabolic syndrome as a risk factor for diabetes

ArticleinExpert Review of Cardiovascular Therapy 8(3):407-12 · March 2010with16 Reads
DOI: 10.1586/erc.10.13 · Source: PubMed
The metabolic syndrome was initially described as an insulin-resistance syndrome characterized by the clustering of metabolic traits such as high triglycerides, low high-density lipoprotein cholesterol, high blood pressure, abdominal obesity and different degrees of impaired glucose regulation. Although different definitions have been developed by various consensus groups, epidemiological studies demonstrate that they all associate the metabolic syndrome with a similar cardiometabolic risk, which is high for diabetes (ranging between three- and 20-fold), depending on the number of components and the inclusion of impaired fasting glucose, impaired glucose tolerance or both. The latter appear to indicate the failure of the beta cell to produce enough insulin to compensate for the increased demand due to insulin resistance. There is a hyperbolic relationship between insulin production and insulin sensitivity, which can be calculated by the disposition index. When this is altered there is a higher risk of developing Type 2 diabetes. There have been no clinical trials in subjects selected by the diagnosis of metabolic syndrome, but structured lifestyle changes have been tested in people with impaired fasting glucose/impaired glucose tolerance and have been able to reduce incident Type 2 diabetes by almost 50%, as long as a weight loss of at least 5% is achieved. Oral antidiabetic and anti-obesity drugs have also been successful to a lesser degree. Some fibrates have reduced or delayed incident diabetes. Extended-release niacin has a neutral effect and statins are controversial. ACE inhibitors and ARBs are the antihypertensive agents least associated with incident diabetes.
    • "Metabolic syndrome refers to central obesity, insulin resistance, impaired glucose tolerance, dyslipidaemia, and elevated blood pressure [18, 19]; these are considered to increase the incidence of cardiovascular disease and type II diabetes202122. Metabolic syndrome is also closely related with an increased risk of NAFLD and kidney dysfunction [23, 24]. Metabolic syndrome and its related diseases present with chronic mild inflammation [25, 26]. "
    [Show abstract] [Hide abstract] ABSTRACT: We sought develop and characterize a diet-induced model of metabolic syndrome and its related diseases. The experimental animals (Spague-Dawley rats) were randomly divided into two groups, and each group was fed a different feed for 48 weeks as follows: 1) standard control diet (SC), and 2) a high sucrose and high fat diet (HSHF). The blood, small intestine, liver, pancreas, and adipose tissues were sampled for analysis and characterization. Typical metabolic syndrome (MS), non-alcoholic fatty liver disease (NAFLD), and type II diabetes (T2DM) were common in the HSHF group after a 48 week feeding period. The rats fed HSHF exhibited signs of obesity, dyslipidemia, hyperglycaemia, glucose intolerance, and insulin resistance (IR). At the same time, these animals had significantly increased levels of circulating LPS, TNFα, and IL-6 and increased ALP in their intestinal tissue homogenates. These animals also showed a significant reduction in the expression of occluding protein. The HSHF rats showed fatty degeneration, inflammation, fibrosis, cirrhosis, and lipid accumulation when their liver pathologies were examined. The HSHF rats also displayed increased islet diameters from 12 to 24 weeks, while reduced islet diameters occurred from 36 to 48 weeks with inflammatory cell infiltration and islet fat deposition. The morphometry of adipocytes in HSHF rats showed hypertrophy and inflammatory cell infiltration. HSHF CD68 analysis showed macrophage infiltration and significant increases in fat and pancreas size. HSHF Tunel analysis showed significant increases in liver and pancreas cell apoptosis. This work demonstrated the following: 1) a characteristic rat model of metabolic syndrome (MS) can be induced by a high sucrose and high fat diet, 2) this model can be used to research metabolic syndrome and its related diseases, such as NAFLD and T2DM, and 3) intestinal endotoxemia (IETM) may play an important role in the pathogenesis of MS and related diseases, such as NAFLD and T2DM.
    Full-text · Article · Dec 2014
    • "Metabolic syndrome (MetS) is a constellation of metabolic disorders including glucose intolerance, central obesity, dyslipidaemia and hypertension [1]. In epidemiological surveys, MetS is associated with increased risk of incident cardiovascular diseases (CVD) [2], and diabetes [3]. Individuals with MetS had approximately a 45% higher all-cause mortality and a 78% higher coronary heart disease-induced deaths compared to individuals without MetS in previous meta-analyses [4,5]. "
    [Show abstract] [Hide abstract] ABSTRACT: The incidence of metabolic syndrome (MetS) is rapidly increasing worldwide and associated with alanine aminotransferase (ALT) activity. However, the impact of ALT activity on MetS incidence is inconsistent in published literature. We therefore estimated the association between elevated ALT activity and incident MetS through a meta-analysis of prospective cohort studies. All published prospective cohort studies on the association between elevated ALT activity and incident MetS were retrieved from Pubmed, Embase, and the Institute for Scientific Information (ISI). In all, seven prospective cohort studies, with 31545 participants and 2873 cases of incident MetS were recruited. If there was insignificant heterogeneity (P-value>0.05 and I(2)<50%), the fixed-effect model was used to calculate the pooled relative risks (RRs) of incident MetS induced by raised ALT. Otherwise, the random-effect model was used. The calculated RR was 1.81 (95% confidence interval [CI]: 1.49-2.14) when the incidence of MetS was compared between the highest versus the lowest classification of ALT activities. The pooled RR was 1.13 (95% CI: 1.11-1.16) in dose-response analysis with 5 units per liter (U/l) of ALT increment. Subgroup analysis suggested that gender disparity might be the main origin of heterogeneity in overall analysis (P = 0.007 between RRs of gender-specific subgroups evaluated with 5 U/l increments of ALT). Women had a higher dose-response risk of MetS incidence (1.38, 95% CI: 1.20-1.55) than men. Furthermore, sensitivity analysis confirmed the stability of results. No publication bias was found in our meta-analysis. Current evidence from prospective studies supports the association between ALT elevation and increasing MetS incidence. This association is closer and more consistent in female population. Further studies are needed to confirm this association and to investigate the potential mechanism of ALT activity on MetS occurrence.
    Full-text · Article · Dec 2013
    • "This feature indicates that these individuals have developed central obesity; the first symptom of the metabolic syndrome. The metabolic syndrome is the main risk factor for developing type-2 diabetes and cardiovascular diseases [42,43]. The syndrome is characterized by the presence of at least three of five symptoms: central obesity, impaired glucose regulation, insulin resistance, dyslipidemia (increased triglyceridemia and low plasma HDL-c), and hypertension44454647. "
    [Show abstract] [Hide abstract] ABSTRACT: The present study aimed to determine, in a swine model of leptin resistance, the effects of type and timing of maternal malnutrition on growth patterns, adiposity and metabolic features of the progeny when exposed to an obesogenic diet during their juvenile development and possible concomitant effects of the offspring sex. Thus, four groups were considered. A CONTROL group involved pigs born from sows fed with a diet fulfilling their daily maintenance requirements for pregnancy. The treated groups involved the progeny of females fed with the same diet but fulfilling either 160% or 50% of pregnancy requirements during the entire gestation (OVERFED and UNDERFED, respectively) or 100% of requirements until Day 35 of pregnancy and 50% of such amount from Day 36 onwards (LATE-UNDERFED). OVERFED and UNDERFED offspring were more prone to higher corpulence and fat deposition from early postnatal stages, during breast-feeding; adiposity increased significantly when exposed to obesogenic diets, especially in females. The effects of sex were even more remarkable in LATE-UNDERFED offspring, which had similar corpulence to CONTROL piglets; however, females showed a clear predisposition to obesity. Furthermore, the three groups of pigs with maternal malnutrition showed evidences of metabolic syndrome and, in the case of individuals born from OVERFED sows, even of insulin resistance and the prodrome of type-2 diabetes. These findings support the main role of early nutritional programming in the current rise of obesity and associated diseases in ethnics with leptin resistance.
    Full-text · Article · Oct 2013
Show more