Increased sensorimotor network activity in DYT1 dystonia: A functional imaging study

Centre for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA.
Brain (Impact Factor: 9.2). 03/2010; 133(Pt 3):690-700. DOI: 10.1093/brain/awq017
Source: PubMed


Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used (15)Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders.

Download full-text


Available from: Maren Carbon
    • "To identify the brain region(s) associated with the abnormal movements, we microinjected L-DOPA into regions known to play a prominent role in dystonia. Data from animals and human imaging studies suggest that dystonia is a network disorder involving cortico-striato-pallidothalamo-cortical and cerebello-thalamo-cortical pathways (Neychev et al., 2008; Carbon et al., 2010; Niethammer et al., 2011; Lehericy et al., 2013). Therefore, the striatum and cerebellum were chosen for microinjection because these regions are often implicated in dystonia and receive abundant catecholaminergic innervation (dopamine in the striatum and norepinephrine in the cerebellum). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal dopamine neurotransmission is associated with many different genetic and acquired dystonic disorders. For instance, mutations in genes critical for the synthesis of dopamine, including GCH1 and TH cause l-DOPA-responsive dystonia. Despite evidence that implicates abnormal dopamine neurotransmission in dystonia, the precise nature of the pre- and postsynaptic defects that result in dystonia are not known. To better understand these defects, we generated a knock-in mouse model of l-DOPA-responsive dystonia (DRD) mice that recapitulates the human p.381Q>K TH mutation (c.1141C>A). Mice homozygous for this mutation displayed the core features of the human disorder, including reduced TH activity, dystonia that worsened throughout the course of the active phase, and improvement in the dystonia in response to both l-DOPA and trihexyphenidyl. Although the gross anatomy of the nigrostriatal dopaminergic neurons was normal in DRD mice, the microstructure of striatal synapses was affected whereby the ratio of axo-spinous to axo-dendritic corticostriatal synaptic contacts was reduced. Microinjection of l-DOPA directly into the striatum ameliorated the dystonic movements but cerebellar microinjections of l-DOPA had no effect. Surprisingly, the striatal dopamine concentration was reduced to ∼1% of normal, a concentration more typically associated with akinesia, suggesting that (mal)adaptive postsynaptic responses may also play a role in the development of dystonia. Administration of D1- or D2-like dopamine receptor agonists to enhance dopamine signalling reduced the dystonic movements, whereas administration of D1- or D2-like dopamine receptor antagonists to further reduce dopamine signalling worsened the dystonia, suggesting that both receptors mediate the abnormal movements. Further, D1-dopamine receptors were supersensitive; adenylate cyclase activity, locomotor activity and stereotypy were exaggerated in DRD mice in response to the D1-dopamine receptor agonist SKF 81297. D2-dopamine receptors exhibited a change in the valence in DRD mice with an increase in adenylate cyclase activity and blunted behavioural responses after challenge with the D2-dopamine receptor agonist quinpirole. Together, our findings suggest that the development of dystonia may depend on a reduction in dopamine in combination with specific abnormal receptor responses. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email:
    No preview · Article · Jul 2015 · Brain
  • Source
    • "Despite these drawbacks, animal models have helped to identify alterations in neuronal networks possibly leading to dystonia. Their value was further emphasized by the fact that a reduction of the dopamine-binding capacity of striatal type 2 dopamine-receptors (D2R; Dang et al., 2012), as well as alterations in the cerebellothalamocortical pathways could be observed (Uluğ et al., 2011), findings already known from human mutation carriers (Asanuma et al., 2005; Carbon et al., 2010a,b). The transgenic knock-in models have been extensively characterized on an electrophysiological level and broadened our understanding of the neuronal network alterations potentially leading to dystonia: for example, recordings of MSNs in mice overexpressing mutant human torsinA showed a pronounced alteration of glutamatergic synaptic transmission. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interneurons comprise a minority of the striatal neuronal population of roughly 5%. However, this heterogeneous population is of particular interest as it fulfills an important relay function in modulating the output of the only type of striatal projection neurons, i.e., the medium spiny neuron (MSN).One subtype of this heterogenous group, the cholinergic interneuron, is of particular scientific interest as there is a relevant body of evidence from animal models supporting its special significance in the disease process. The development of protocols for directed differentiation of human pluripotent stem cells (PSC) into striatal interneurons provides a unique opportunity to derive in vitro those cell types that are most severely affected in dystonia.In this review we first aim to give a concise overview about the normal function of striatal interneurons and their dysfunction in dystonia in order to identify the most relevant interneuronal subtype for the pathogenesis of dystonia. Secondly we demonstrate how knowledge about the embryonic development of striatal interneurons is of particular help for the development of differentiation protocols from PSC and by this depict potential ways of deriving in vitro disease models of dystonia. We furthermore address the question as to whether cell replacement therapies might represent a beneficial approach for the treatment of dystonia.
    Full-text · Article · Jul 2014 · Frontiers in Cellular Neuroscience
  • Source
    • "Other studies of sequence learning in patients with Parkinson's disease have also reported heterogeneous medication-induced changes and have linked the individual differences across this population to the level of performance at baseline (Argyelan et al., 2008; Carbon et al., 2010). This contrasts with the "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequential behaviour is widespread not only in humans but also in animals, ranging in different degrees of complexity from locomotion to birdsong or music performance. The capacity to learn new motor sequences relies on the integrity of basal ganglia-cortical loops. In Parkinson’s disease the execution of habitual action sequences as well as the acquisition of novel sequences is impaired partly due to a deficiency in being able to generate internal cues to trigger movement sequences. In addition, patients suffering from Parkinson’s disease have difficulty initiating or terminating a self-paced sequence of actions. Direct recordings from the basal ganglia in these patients show an increased level of beta (14–30 Hz) band oscillatory activity associated with impairment in movement initiation. In this framework, the current study aims to evaluate in patients with Parkinson’s disease the neuronal activity in the subthalamic nucleus related to the encoding of sequence boundaries during the explicit learning of sensorimotor sequences. We recorded local field potential activity from the subthalamic nucleus of 12 patients who underwent deep brain stimulation for the treatment of advanced Parkinson’s disease, while the patients in their usual medicated state practiced sequences of finger movements on a digital piano with corresponding auditory feedback. Our results demonstrate that variability in performance during an early phase of sequence acquisition correlates across patients with changes in the pattern of subthalamic beta-band oscillations; specifically, an anticipatory suppression of beta-band activity at sequence boundaries is linked to better performance. By contrast, a more compromised performance is related to attenuation of beta-band activity before within-sequence elements. Moreover, multivariate pattern classification analysis reveals that differential information about boundaries and within-sequence elements can be decoded at least 100 ms before the keystroke from the amplitude of oscillations of subthalamic nucleus activity across different frequency bands, not just from the beta-band. Additional analysis was performed to assess the strength of how much the putative signal encoding class of ordinal position (boundaries, within-sequence elements) is reflected in each frequency band. This analysis demonstrates that suppression of power in the beta-band contains the most class-related information, whereas enhancement of gamma band (31–100 Hz) activity is the second main contributor to the encoding. Our findings support the hypothesis that subthalamic nucleus-mediated gating of salient boundary elements during sequence encoding may be a prerequisite for the adequate acquisition of action sequences and the transition to habitual behaviour.
    Full-text · Article · Jul 2014 · Brain
Show more