ArticlePDF Available

Chromatic alteration on marble surfaces analysed by molecular biology tools

Authors:

Abstract and Figures

The patina represents a superficial natural alteration of the constituting matter of the work of art. It emerges from the natural and usual stabilization process that the materials of the surface undergo because of the interaction with outdoor agents characterizing the surrounding environment. Besides, it is not linked to an obvious phenomenon of degradation that can be noticed through the change in the original colour of the matter. This is what we intend when we talk about biological patina usually generated by macro and/or micro-organic colonization (fungi, bacteria, alga) which contributes to surface bio-deterioration and thus lead to the formation of orange, red or even brown and dark pigmented areas. The presence of chromatic alterations (rose-coloured areas), as a consequence of bacterial colonization, was most particularly pointed out in different sites, such as in the marble slabs on the facades of both the Cathedral of Siena (Duomo di Siena) and the Certosa of Pavia. The present study shows an example of chromatic alteration of the surface of marble works due to bacterial colonization.
Content may be subject to copyright.
Conservation Science in Cultural Heritage! "/#$$"
1. Introduction
The surfaces of works of art exposed to a specific environment with which they inter-
act, are subject to a high number of exchanges and reactions leading to the creation of
the “natural patina” through the alteration of the surface. That definition already explains
its genesis and stands as the consequence of a natural phenomenon of surface alteration
of the matter. Cesare Brandi [1] defined patina as “that particular characterization of the
surface of a historical, cultural, artistic work deriving exclusively from the natural and
usual stabilization and modification process that the materials of the surface undergo
because of the interaction with outdoor agents characterizing the surrounding environ-
ment, in particular with the light energy, the air and its components, the temperature and
the humidity that characterize it”. The legislation called NorMal 1/88 defined it as the
alteration strictly limited to natural modifications of the surface that is not linked to an
obvious phenomenon of degradation that can be noticed through a change in the origi-
nal colour of the matter” [2].
The patina is considered a very complex process due to an exchange of matter and
energy between two open systems, i.e the work of art and the environment; thus the pati-
na arouses an additional fascination onto the surface of the work, except if it alters the
interpretation of the work too much [3]. This is often the case when we talk about “bio-
logical patina” or bio-films, usually generated by macro and/or micro-organic colonization
(fungi, bacteria, alga) which contribute to the surface bio-deterioration and thus lead to
the formation of pigmented areas [4-5]. The presence of chromatic alterations (rose-
CHROMATIC ALTERATION ON MARBLE SURFACES ANALYSED
BY MOLECULAR BIOLOGY TOOLS
Franco Palla
Dipartimento di Scienze Botaniche, Laboratorio di Biologia Molecolare
Università degli Studi di Palermo
Elena Tartamella
Dottore in Restauro, Recupero e Riqualificazione delle Architetture, Facoltà di Architettura
Università degli Studi di Palermo
#
coloured areas), as a consequence of bacterial colonization, were particularly pointed out
in different sites, such as in the marble slabs on the facades of both the Cathedral of
Siena (Duomo di Siena) [6-7] and the Certosa of Pavia [8].
The present study shows an example of chromatic alteration of the surfaces of mar-
ble works due to some bacterial species, such as Micrococcus.
2. Study case
The monumental complex of Fontana Pretoria (Pretoria Fountain) is situated in one of
the richest sites in terms of history and meaning [9] of the Historical Centre of Palermo. It
offers the monumental water machine [10], extraordinary scenographic complex which, in
the collective psyche, represents, with the flow of water, one of the souls of the city. The
Pretoria Fountain is even more highlighted by the unusual architectural structure, adorned
with numerous marble elements, statues of various sizes, basins, steps and terrace eas-
ing a closer view onto the work (fig. 1). That was the intent of the Senate of Palermo when
they decided in 1573 to buy the fountain from the Toledo family. Twenty years earlier, the
fountain had been ordered by the Toledo family to Francesco Camilliani, a Tuscan man-
nerist sculptor, for their private Florentine villa. Later on, his son, Camillo Camilliani creat-
ed the miscellaneous marble elements giving life to the great water machine of Palermo.
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
Figure 1. Camillo Camilliani, Pretoria Fountain: preliminary drawing for
the definitive stage, Berlin, Kunstbibliotek.
'
Pretoria Fountain, best known as “Fontana delle Vergogne” (Fountain of the Shames)
probably because of the suggestive sculptural elements, also represents an important
example of stony works in outdoor environment and degraded both for natural causes
and for inappropriate choices made in previous restoration interventions [11].
The latest restoration of the whole fountain including the water machine started in
1998 under the direction of the architect G. Favara (Sovrintendenza per i BB. CC. AA. of
Palermo) and the Dr M.P. Demma (Centro Regionale di Progettazione e Restauro della
Regione Siciliana). This restoration shall contribute to gathering a complex basis of
knowledge, studies and researches [12-13].
The sculptural-architectural work shows a widespread and complex state of alteration:
the marmoreal surfaces were almost completely covered by calcareous deposits and
encrustations mostly grey-brown, stratified and very homogeneous that hid the modelled
marbles of the central stem, the zoomorphic heads of the fish pond and also large parts of
the full relief statues. Besides, the water belt of the fountain and the presence of an inap-
propriate hydraulic system, go back as early as the restoration of the 1950s and have con-
tributed to creating optimal conditions for the growth of weeds and abundant microflora [14].
The encrustations and the deposits created a “uniform mantle” that covered the whole
structure and hid the real tone of the work. This point made it impossible to precisely
know the general conservation state of the marmoreal materials (fig. 2A-B). The cleaning
Conservation Science in Cultural Heritage
AB
Figure 2. Sediments on the surfaces of the marble samples: A) piece of the thick layer of
deposit/encrustation covering the works; B) algal patina on anthropomorphic element [9].
(
carried out in the first stage of the latest restoration (finished in 2003), have pointed out
for the statues a phenomenon of loss of cohesion. Parts of the stony shapes gathered
lots of cracks and fractures; numerous interventions and/or remaking were therefore real-
ized thanks to iron pins and flasks (fig. 3) which provoked the breaking of the parts of the
weaker material as well as a disjointedness of the moulded levels because they under-
went oxidation and an increase in volume.
Pigmented areas were discovered around the water pipe and classified as chromatic
alterations deriving from the diffusion of the product of iron oxidation (red-orange colour)
or were correlated to the presence of metallic elements in copper alloy (green sky-blue
colour) [15]. A particular attention was drawn on the pigmented areas that came out, after
the cleaning stage, on the marmoreal surfaces of the statues of Ebe and Naiade-
Caratide, on the pleats of the dress of Cerere (fig. 4A), on the Child with jug of the cen-
tral stem (fig. 4B) and on the balustrade facing the Pretorio Palace (fig. 4C). It was con-
cluded that these pigmented areas were gradually spreading and increasing and that the
chemical-petrographical analysis put some biological cause forward.
Scientific literature indicates that epi- and endolytic micro-organisms have an important
role in most parts of the processes, they indeed contribute both to chemical-physical alter-
ation of the constituent materials and to the formation of pigmented patina on the surfaces
[16-18]. These micro-organisms are able to produce fast colouring pigments such as chloro-
phyll, carotenoid, melanin that may generate chromatic variations towards yellow, orange,
red, or even brown colour [4]; as an example, the reaction of the carotenoid pigments with
the calcareous groundmass leads to the formation of very strong chemical bonds, the prod-
uct of which is almost insoluble under organic solvents or inorganic ones [7]. The marmo-
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
Figure 3. Chromatic alteration of
the stem basin caused by the old
metallic reinforcement rings [9].
)
real works of the Pretoria fountain presented no thick encrustations and were then probably
in thermo-hygrometric, lighting and nutrition conditions that may trigger micro-biotic growth.
The samples from the pigmented areas, useful to the characterisation of the species
of the possible microbial gathering, were taken either by means of a sterile tampon
(dampened with solution of 0.9% NaCl-0.02% Tween-80-polyoxyethylene sorbitan
monooleate) or, when possible, micro samples of material were taken by means of dis-
posable sterile equipment.
When the sample was taken by a damp plug, the solution in which the stick was
dipped was diluted (1:10) and afterwards incubated at 30°C for 16-24 hours.
The morphological analysis of the bacterial typologies grown on agar plate that was
carried out through examination under direct microscopic observation, has allowed to dis-
tinguish bacterial colonies, either pigmented ones (yellow, red) and colourless ones (fig. 5).
Conservation Science in Cultural Heritage
Figure 4. Pigmented areas: A) Cerere, pleats of the dress, B) Child, central stem, C)
Balustrade facing Pretorio Palace.
A
B
C
*
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
Figure 5. Bacterial colony cultured on agar plate: A) pigmented; B) pigmented and colour-
less [19].
A
B
"
Conservation Science in Cultural Heritage
At the scanning electron microscope, they respectively appear as bacilliform and coccus-
form bacteria [19].
When it happened possible to execute micro sample, 200 mg of stony material were
submitted to cycles of freezing (– 80°C) and unfreezing (+ 55°C) in presence of 250 µl of
10 mM Tris HCl pH 8.0 / 1mM EDTA (1XTE) to induce the lysis of the microbial cells and
to extract the bacterial DNA using the kit “QIAmp DNA stool” according to the protocol
given by QIAGEN and slightly modified by the authors. This methodology was also cho-
sen to extract the DNA of the bacterial colony isolated on agar plate.
Aliquots of bacterial DNA were successively used as template molecule in the reac-
tions of in vitro molecular amplification (PCR) [19], according to specific protocols.
The determination of the nucleotide sequence of the PCR fragments and the com-
parison with the corresponding parts of microbial genomes deposited in the database
EMBL-Germany and NIH USA [20], allowed us to identify Arthrobacter, Bacillus and
Micrococcus as the prevailing microbial species to be found on the pigmented areas.
They belong to bacterial species able to produce pigmentations, crystalline aggregates,
effluorescence and patina [4].
The characterisation and identification of the bacterial colonies is also of major impor-
tance in terms of treatment of the marble surfaces with biocides, so as to be able to eval-
uate their efficiency and to determine the appropriate concentration of each biocide to be
used. In the present case, the Benzalconium chloride in aqueous solution and the
Algophase in isopropylic alcohol were used. Then, by means of tests of “inhibition of bac-
terial growth”, the action of each biocide in concentrations from 0,1 to 3% was valuated
for each bacterial species. The analysis of the ring of inhibition of bacterial growth
emphasizes that Bacillus (fig. 6) and Arthrobacter have a high degree of sensitivity under
the action of either the Benzalconium chloride or the Algophase, while the test colonies
of Escherichia coli, strain 71/18, (fig. 6) are less sensitive to the product. Indeed the inhi-
bition of the growth is much smaller.
Figure 6. Test of inhibition of
bacterial growth: effect of bio-
cide (concentrations 0.3 and
3%) benzalconium chloride
(plate on the left side) /
Algophase (plate on the right
side) on the growth of the
bacteria Bacillus and E. coli.
+
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
3. Conclusion
The stony works located outside display an acceleration of the natural ageing of the
materials owing to physical, chemical and biological factors. The physical causes can be
assimilated to purely mechanical and thermal actions. The chemical causes derive from
the interaction of the compounds with the constitutive elements of the works of art; they
are often induced by macro and micro biological systems (especially weeds, alga, fungi
and bacteria).
According to the metabolic and anchorage process to the substratum, these systems
cause the alteration of the work, well-known as bio-deterioration, that appears on the sur-
faces modifying its geometry and the eye-perception. The formation of biological patina
is usually a consequence of a colonization by various bacterial genera able to produce
pigmentations, crystalline aggregations and mineral precipitates of carbonate and phos-
phate, efflorescence and patina. It is therefore one of the superficial alterations that is
most frequently detected [4].
In the marble pieces of the Pretoria Fountain, some areas showing an expanding and
intensifying reddish chromatic alteration were pointed out. These alterations as showed
by the chemical-stratigraphical analysis have a biological origin.
The study shows that, in the pigmented areas, various bacterial species are present.
The prevalent ones, Bacillus, Arthrobacter and Micrococcus, were detected by a combi-
nation of techniques of in vitro culture and molecular investigations, according to proto-
cols carried out in our laboratory for different study cases [21-24].
Concerning the genus Bacillus, we know that it includes aerobes and facultative aer-
obes, bastoncellar bacteria, able to produce endospore allowing the survival of organ-
ism even if the environmental conditions in terms of nutritious, temperature and water
activity, suddenly change [25].
The bacteria of Arthrobacter genus, even though they don’t create spores or other
quiescent forms, are particularly resistant to the drying process and nutritious lack.
They constitute a heterogeneous group of bacteria characterised by a great nutri-
tional versatility able to degrade herbicides, caffeine, nicotine, phenols and other
organic compounds that are not so much common [25]. Some Arthrobacter species
present different morphologies during the cycle of life starting from a single element
with a form of coccus and transforming into a rod form that then constitutes the most
important form of microcolony and that is successively retransformed into coccus
form [25].
,
Conservation Science in Cultural Heritage
As it was supposed from the beginning of the study, the presence of bacteria of
Micrococcus genus was definitely confirmed. Finally, the presence of corineform bacteria
belonging to the Cellulomonas family facultative aerobes with variable morphology is not
to be excluded.
The inhibition test of bacterial growth have provided information on the efficiency and
on the optimal concentration of biocide to use in the frame of this restoration project. They
also show how important is the concentration of the bacterial species present in a micro-
bial consortium is. As a matter of fact, different bacterial species show a different sensi-
tivity to the same biocide, as it was showed in this work through the different inhibition
mark of the Arthrobacter and Bacillus growth compared to that of Escherichia coli. The
use of molecular biotechnologies for a quick and accurate characterisation of the exist-
ing bacterial species, appears as one of the starting points of a project of conse-
rvation/restoration because it provides fundamental information regarding the choice of
the right biocide and the optimal concentration to use.
The restoration yard of Pretoria Fountain stands as a real laboratory of research
under progress, and above all, it allowed to develop interesting biotechnological applica-
tions for an efficient and specific diagnosis of microbial communities on marble works of
art. If we consider these applications in terms of scientific capitalization [26], they consti-
tute a surveying methodology in the field of microbial colonisation that proves to be use-
ful to the prevention and preservation of the cultural heritage.
Acknowledgements
Particular thanks are directed to Dr Demma and architect Favara, for the constant and
faithful collaboration and also to the Soprintendenza BB.CC. of Palermo that partially
financed the present research. Moreover, we wish to thank Professor Tomaselli and the
architect Smecca for their precious collaboration. The survey was carried out in the frame
of the research activity (ex 60%) MIUR.
Bibliography
[1] BRANDI C. 1994, Il restauro: teoria e pratica (a cura di Michele Cordaro), edizioni
Roma, Edizioni Riuniti.
[2] ISTITUTO CENTRALE PER IL RESTAURO 1988, Raccomandazioni Normal, altera-
zioni macroscopiche dei materiali lapidei, Roma, ICR-CNR.
#$
[3] GORBUSHINA A.A., KRUMBEIN W.E., HAMMAN C.H., PANINA L., SOUKHARJEV-
SKI S., WOLLENZIEN U. 1993, Role of black fungi in colour change and biodeterio-
ration of antique marbles, Geomicrobiology Journal,11, 205-220.
[4] KRUMBEIN W.E. 2003, Patina and cultural heritage a geomicrobiologist’s pro-
spective How microbes change surfaces, in R. Kozlowski (ed), Cultural Heritage
Research: a Pan European Challenge, Proceedings of the 5th European
Commission Conference (Cracow, 16-18 May 2002), 1-9.
[5] STERFLINGER K., KRUMBEIN W.E., RULLKOTTER J. 1999, Patination of mar-
ble and granite by microbial communities, Z. dtsch. Geol. Gesellsch., 150, 299-
311.
[6] TIANO P., TOMASELLI L. 1989, Un caso di biodeterioramento del marmo, Arkos, 6,
12-18.
[7] TIANO P., TOMASELLI L. 2004, Red staining and heterotrophic bacteria, Coalition,
8, 2-4.
[8] ABBRUSCATO P., SORLINI C. , ZANARDINI E. 2003, Molecular characterisation of
lead-resistant isolates from Certosa di Pavia red strains, in C. Saiz-Jimenez (ed),
Molecular Biology and Cultural Heritage, Lisse/Abingdon/Exton (PA)/Tokyo: A.A:
Balkema Publishers, 109-113.
[9] DEMMA M.P. 2006, Da Firenze a Palermo: rilettura delle vicende storiche e artistiche
della Fontana Pretoria, in G. Favara & M.P. Demma, La Fontana Pretoria in Palermo,
Palermo, Assessorato BB CC e AA. e P.I.
[10] CASSARÀ S. 2006, La macchina dell’acqua, in G. Favara & M.P. Demma, La
Fontana Pretoria in Palermo, Palermo, Ass.to BB CC e AA. e P.I., 225-245.
[11] DEMMA M., FAVARA G. 2006. Un problema di metodo: il restauro, in G. Favara &
M.P. Demma, La Fontana Pretoria in Palermo, Palermo, Assessorato BB CC e AA e
P.I., 281-307.
[12] DEMMA M., FAVARA G. 2006, La Fontana Pretoria in Palermo, Palermo,
Assessorato BB CC e AA. e P.I. (731.7209458231 CDD-20).
[13] TARTAMELLA E. 2006, Fontana Pretoria: Studio e ricerca delle alterazioni naturali
ed artificiali sulla superficie marmorea dello stelo centrale, Palermo, Thesis
University.
[14] FAVARA G. 2006, La conoscenza dello stato di conservazione prima del restauro, in
G. Favara & M.P. Demma, La Fontana Pretoria in Palermo, Palermo, Assessorato BB
CC e AA. e P.I., 11-18.
[15] RIZZO G., ERCOLI L. 2006, Indagini chimiche-petrografiche sui materiali lapidei e
sul loro degrado, in G. Favara & M.P. Demma, La Fontana Pretoria in Palermo,
Palermo, Assessorato BB CC e AA. e P.I., 249-257.
[16] BRIMBLECOMBE P., GROSSI C. 2003, Blackening of buildings, in H. CACHIER
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
#
Conservation Science in Cultural Heritage
(ed.), Air pollution & cultural heritage, Workshop Abstracts (Seville, Spain, 1-3
december 2003), Seville, 21-22.
[17] MAY E., LEWIS F.J., PEREIRA S., TAYLER S., SEAWARD M.R.D., ALLSOPP D.
1993, Microbial deterioration of building stone - a review, Biodeterioration Abstracts,
7, 109-123.
[18] URZÍ C., KRUMBEIN W.E., WARSCHEID T. 1992, On the Question of Biogenic
Coulour Changes of Mediteranean Monuments in D. DECROUEZ, J. CHAMAY and
F. ZEZZA (eds.), Geneve, Proceedings 2nd International Symposium. Musée d’art et
d’historie, 397-420.
[19] PALLA F. 2006, Analisi per l’identificazione di microorganismi deteriogeni sulle
superfici marmoree delle statue di Fontana Pretoria, in G. Favara & M.P. Demma,
La Fontana Pretoria in Palermo, Palermo, Assessorato BB CC e AA. e P.I., 261-
266.
[20] ALTSCHUL S.F., MADDEN T.L., SCHÄFFER A.A., ZHANG J., ZHANG Z., MILLER
W., LIPMAN D.J. 1997, Gapped BLAST and PSI-BLAST: a new generation of pro-
tein database search programs, Nucleic Acids Res., 25, 3389-3402.
[21] FEDERICO C., RUSSO R., ANELLO L., PALLA F. 1999, Biotechnologies tools to test
biodeteriogens in stone specimens, in O. CIFFERI, P. TIANO, G. MASTROMEI
(eds), Microbes and Art, the Role of Microbial Communities in the Degradation and
Protection of Cultural Heritage, ICMC Abstracts (Florence, 16-19 June 1999)
Firenze, Consiglio Nazionale delle Ricerche.
[22] PALLA F., FEDERICO C., RUSSO R., ANELLO L. 2002, Identification of Nocardia
restricta in biodegradated sandstone monuments by PCR and nested-PCR DNA
amplification, FEMS Microbiol Ecol., 39, 85-89.
[23] PALLA F., ANELLO L., PECORELLA S., RUSSO R., DAMIANI F. 2003,
Characterisation of bacterial communities on stone monuments by molecular biology
tools. C. Saiz-Jimenez (ed), Molecular Biology and Cultural Heritage,
Lisse/Abingdon/Exton (PA)/Tokyo: A.A: Balkema Publishers, 115-118.
[24] PALLA F., ANELLO L., MARINEO S., LOMBARDO G., 2006. Characterisation of bac-
terial communities in indoor environment, in R. FORT, M. ALVAREZ de BUERGO, M.
GOMEZ-HERAS & C. VAZQUEZ-CALVO (eds), Heritage, Watering and
Conservation, London/Leiden/NewYork/Philadelphia/Singapore, Taylor & Francis
Group, 361-365.
[25] MADIGAN M.T., MARTINKO J.M., PARKER J. 2003, Brock, Biologia dei microrgani-
smi, 10 ed, Milano, Casa Editrice Ambrosiana.
[26] GONZALEZ J.M. 2003, Overview on existing molecular techniques with poten-
tial interest in cultural heritage. C. Saiz-Jimenez (ed), Molecular Biology and
Cultural Heritage, Lisse/Abingdon/Exton (PA)/Tokyo: A.A: Balkema Publishers,
3-13.
##
ALTERAZIONI CROMATICHE SU SUPERFICI MARMOREE:
ANALISI MEDIANTE TECNICHE DI BIOLOGIA MOLECOLARE
1. Introduzione
Le superfici dei manufatti artistici, esposte all’ambiente circostante con cui
interagiscono, attivano un elevato numero di scambi e reazioni che, generando
modifiche della superficie, portano alla formazione delle “patine naturali” il
nome già ne spiega la genesi – che sono la conseguenza di una naturale alte-
razione superficiale della materia. Cesare Brandi [1] definiva la “patina” come
«quella particolare caratterizzazione della superficie di un manufatto di interes-
se storico, culturale, artistico, dovuta unicamente al naturale e normale proces-
so di assestamento e modificazione che i materiali costitutivi della superficie
subiscono per l’interazione con gli agenti esterni caratterizzanti l’ambiente in cui
è conservato, in particolare con l’energia luminosa, l’aria e i sui componenti, la
temperatura e l’umidità che la caratterizzano». La Raccomandazione NorMal
1/88 la identificava come «alterazione strettamente limitata a quelle modifica-
zioni naturali della superficie dei materiali non collegabili a manifesti fenomeni
di degradazione e percepibili come una variazione del colore originario del
materiale» [2].
La “patina” è certamente un processo molto complesso, dovuto a scambi
di materia ed energia tra due sistemi aperti come il manufatto e l’ambiente, che
genera un fascino aggiuntivo alla superficie dell’opera, a meno che non alteri
profondamente la lettura del manufatto [3] come spesso accade nel caso delle
“patine biologiche”, dovute generalmente a colonizzazioni da macro e/o micror-
ganismi (funghi, batteri, alghe) che, inducendo il biodeterioramento della super-
ficie, portano alla formazione di aree pigmentate [4-5]. In particolare, la pre-
senza di alterazioni cromatiche (aree rosate), conseguenza di colonizzazioni
batteriche, sono state evidenziate in diversi siti come nelle lastre marmoree
delle facciate del Duomo di Siena [6-7] e della Certosa di Pavia [8].
Lo studio qui riportato mostra un esempio di alterazione cromatica della
superficie di manufatti marmorei indotta da alcune specie batteriche con parti-
colare riferimento al genere Micrococcus.
2. Caso di studio
Il complesso monumentale della Fontana Pretoria si trova in uno dei siti del
Centro Storico di Palermo più densi di storia e di significato [9] e ospita la monu-
mentale macchina dell’acqua [10], straordinario apparato scenografico che,
nell’immaginario collettivo, rappresenta con il fluire delle acque una delle anime
della città. Il fascino della Fontana Pretoria è ancor più esaltato dall’insolito
impianto architettonico, adorno di numerosi elementi marmorei, statue dalle
diverse dimensioni, vasche, scalinate e terrazzamenti per permetterne l’ammi-
razione ancor più da vicino (fig. 1): questo l’intento del Senato palermitano che
nel 1573, non badando ai costi, acquistò la fontana dalla famiglia Toledo che
circa un ventennio prima l’aveva commissionata a Francesco Camilliani, scul-
tore manierista toscano, per la propria villa fiorentina. Successivamente, il figlio,
Camillo Camilliani, compose i molteplici elementi marmorei dando vita alla
monumentale macchina d’acqua palermitana.
Fontana Pretoria, a molti nota come “Fontana delle Vergogne“ a causa,
probabilmente, degli elementi scultorei, rappresenta anche un significativo
esempio di manufatti lapidei esposti all’aperto, degradati sia per cause natura-
li sia per non corrette scelte in precedenti interventi di restauro [11]. Nel 1998,
diretto dall’Arch. G. Favara (Sovrintendenza per i BB. CC. AA. di Palermo) e
dalla Dott.ssa M.P. Demma (Centro Regionale di Progettazione e Restauro
della Regione Siciliana), inizia questo ultimo intervento di restauro dell’intera
fontana, compresa la macchina dell’acqua, che fornirà un complesso ordine di
conoscenze, studi e ricerche [12-13].
Il manufatto scultoreo-architettonico mostrava un esteso e complesso stato
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
#'
Conservation Science in Cultural Heritage
di alterazioni: le superfici marmoree erano quasi completamente ricoperte da
depositi e incrostazioni prevalentemente calcaree grigio-brune, stratificate e
molto coerenti che nascondevano i marmi modellati dello stelo centrale, le teste
zoomorfe della peschiera e grandi porzioni delle statue a tutto tondo. Inoltre,
l’acqua di alimentazione della fontana e la presenza di un inadeguato impianto
idraulico, risalente al restauro degli anni 50 del 1900, avevano creato le condi-
zioni ottimali per la crescita di piante infestanti e di un’abbondante microflora
[14].
Le incrostazioni e i depositi creavano una “cappa uniforme” che ricopriva
l’intera struttura e celava la reale cromia del manufatto non permettendo l’esat-
ta valutazione dello stato di conservazione generale dei sottostanti materiali
marmorei (fig. 2A-B). L’opera di ripulitura e liberazione, effettuata nella prima
fase del più recente restauro (terminato nel 2003), aveva evidenziato fenome-
ni di decoesione nella parte statuaria, porzioni del modellato lapideo appariva-
no gravemente fessurate e fratturate, numerosi interventi e/o rifacimenti erano
stati realizzati ricorrendo all’uso di perni e staffe di ferro che, ossidandosi e
aumentando di volume (fig. 3), avevano causato la rottura delle parti di mate-
riale più debole oltre alla sconnessione dei piani del modellato.
Aree pigmentate erano state riscontrate intorno ai tubi di uscita dell’acqua
e classificate come alterazione cromatica dovuta alla diffusione dei prodotti di
ossidazione del ferro (colore rosso arancio) o correlabili alla presenza di ele-
menti metallici in leghe di rame (colore verde azzurro) [15]. Particolare atten-
zione è stata rivolta alla comparsa, dopo la fase di pulitura, di aree pigmentate
sulle superfici marmoree delle statue di Ebe e Naiade-Caratide, nelle pieghe del
vestito di Cerere (fig. 4 A), del Fanciullo con brocca dello stelo centrale (fig. 4B)
e della balaustra prospiciente il Palazzo Pretorio (fig. 4C), che si diffondevano
e intensificavano nel tempo e che l’analisi chimico-petrografica ipotizzava esse-
re di probabile origine biologica.
La letteratura scientifica riporta che microrganismi epi ed endolitici giocano
un ruolo importante nella maggior parte dei processi sia di alterazione chimico-
fisica dei materiali costituenti sia nella formazione di patine pigmentate sulle
superfici [16-18]. Questi microrganismi sono in grado di produrre pigmenti sta-
bili come clorofille, carotinoidi, melanine in grado di generare variazioni croma-
tiche di colore giallo, arancio, rosso, sino al bruno [4]; ad esempio la reazione
dei pigmenti carotinoidi con la matrice calcarea dà vita alla formazione di lega-
mi chimici molto forti, il cui prodotto è praticamente insolubile sia a solventi orga-
nici che inorganici [7]. Probabilmente i manufatti marmorei della fontana
Pretoria, liberati dalle spesse incrostazioni, si sono ritrovati in quelle condizioni
termoigrometriche, d’illuminazione e di nutrizione che hanno innescato la cre-
scita microbica.
Per la caratterizzazione delle specie che componevano il possibile consor-
zio microbico, i prelievi sulle aree pigmentate sono stati eseguiti sia dalle super-
fici mediante tamponi sterili (inumiditi con sol uzione di 0.9% NaCl-
0.02%.Tween-80-polyoxyethylene sorbitan monooleate) sia eseguendo, quan-
do possibile, microprelievi di materiale mediante attrezzature monouso sterili.
Nel caso in cui il prelievo è stato effettuato mediante tamponi umidi, la solu-
zione in cui era stato immerso il tampone è stata diluita (1:10) con soluzione
fisiologica sterile e un volume pari a 25 ml è stato utilizzato per inoculare pia-
stre di Nutrient-Agar (Nutrient Broth-Difco 25 g/ litro – 2% Agar-Difco), succes-
sivamente incubate a 30°C per 16-24 ore.
L’analisi morfologica delle tipologie batteriche cresciute sui terreni agariz-
zati condotta per osservazione diretta al microscopio ottico delle colonie, ha
permesso di distinguere colonie batteriche sia pigmentate (giallo, rosse) sia
incolori (fig. 4), che al microscopio elettronico a scansione appaiono come bat-
teri bacilliformi e cocchiformi [19].
Nei casi in cui è stato possibile eseguire i micro prelievi, 200 mg di mate-
riale lapideo sono stati sottoposti a cicli di congelamento (– 80°C) e scongela-
mento (+ 55°C) in presenza di 250 ml di 10 mM Tris-HCl pH 8.0 / 1mM EDTA
(1XTE) per indurre la lisi delle cellule microbiche ed estrarre il DNA batterico uti-
#(
lizzando il kit “QIAmp DNA stool”, secondo il protocollo fornito dalla casa pro-
duttrice QIAGEN e da noi parzialmente modificato. Questa metodologia è stata
utilizzata anche per estrarre il DNA dalle colonie batteriche isolate su terreni
agarizzati.
Successivamente, piccole aliquote di DNA batterico sono state utilizzate
come molecole stampo nelle reazioni di amplificazione molecolare in vitro
(PCR) [19], secondo specifici protocolli.
La determinazione della sequenza nucleotidica dei frammenti PCR e il con-
fronto con le corrispondenti porzioni dei genomi microbici, depositati nella
banca dati EMBL- Germany e NIH-USA [20], ha permesso di identificare
Arthrobacter, Bacillus eMicrococcus come le specie prevalenti nel consorzio
microbico presente sulle aree pigmentate: specie batteriche in grado di produr-
re pigmentazioni, aggregati cristallini, efflorescenze e patine [4].
La caratterizzazione e l’isolamento delle colonie batteriche trova una note-
vole valenza anche nella prospettiva del trattamento con biocidi delle superfici
marmoree, al fine sia di valutare l’efficienza sia per determinare la concentra-
zione più opportuna di ciascun biocida che s’intenda utilizzare. In questo caso
sono stati utlizzati il Benzalconio cloruro in soluzione acquosa e l’Algophase in
alcool isopropilico e, ricorrendo ai saggi di “inibizione della crescita batterica”, è
stata valutata l’azione di ciascun biocida, in concentrazioni comprese tra 0,1 e
3%, nei confronti di ciascuna specie batterica isolata.. In particolare, l’analisi
degli aloni di inibizione della crescita batterica mostra che Bacillus (fig. 6) e
Arthrobacter presentano un elevato grado di sensibilità all’azione sia del
Benzalconio cloruro sia dell’Algophase, mentre le colonie controllo di
Escherichia coli, ceppo 71/18, (fig. 6) sono meno sensibili: infatti, è presente un
alone di inibizione della crescita di gran lunga inferiore.
3. Conclusioni
I manufatti lapidei esposti all’aperto presentano un’accelerazione del natu-
rale invecchiamento dei materiali dovuta essenzialmente a fattori di tipo fisico,
chimico e biologico. Le cause fisiche possono essere ricondotte a fatti pura-
mente meccanici e termici, le cause chimiche sono attribuibili alla conseguente
interazione con composti che reagiscono con gli elementi costituenti dei manu-
fatti, spesso indotti da macro e micro-sistemi biologici (principalmente erbe
infestanti, alghe, funghi e batteri). Questi, in base ai loro processi metabolici e
d’ancoraggio al substrato, inducono il deterioramento del manufatto, noto con il
termine di biodeterioramento, che si manifesta visivamente con il cambiamen-
to delle superfici dell’opera, alterando la leggibilità e la geometria del manufat-
to. Una delle alterazioni superficiali maggiormente riscontrate è la formazione
di patine biologiche, conseguenza spesso di colonizzazioni da parte di diversi
generi batterici, in grado di produrre pigmentazioni, aggregati cristallini e preci-
pitati minerali di carbonato e fosfato, efflorescenze, patine [4].
Nei manufatti marmorei della Fontana Pretoria sono state individuate delle
aree che presentavano un’alterazione cromatica tendente al rosso che si
estendeva e intensificava nel tempo e che, come riportato anche dall’analisi chi-
mico-stratigrafica, era possibile imputare ad un’origine biologica. Questo studio
mostra che nelle aree pigmentate sono presenti diverse specie batteriche le cui
predominanti sono state identificate in Bacillus, Arthrobacter e Micrococcus,
ricorrendo alla combinazione di tecniche di coltura in vitro e di indagini moleco-
lari, secondo protocolli messi a punto nel nostro laboratorio anche per altri casi
di studio [21-24].
Per quanto concerne il genere Bacillus, è noto che comprende specie aero-
bie e aerobie facoltative bastoncelliformi, in grado di produrre endospore che
permettono la sopravvivenza dell’organismo anche se le condizioni ambientali,
in termini di nutrienti, temperatura e attività dell’acqua cambiano in maniera
repentina [25]. I batteri del genere Arthrobacter, nonostante non formino spore
o altre forme quiescenti, sono particolarmente resistenti all’essiccamento e alla
carenza di nutrienti. Essi formano un gruppo eterogeneo di batteri, caratteriz-
zato da notevole versatilità nutrizionale tanto che sono stati isolati ceppi capa-
ci di degradare erbicidi, caffeina, nicotina, fenoli e altri composti organici poco
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
#)
Conservation Science in Cultural Heritage
comuni [25]. Alcune specie di Arthrobacter presentano, durante il ciclo vitale,
morfologie diverse che, da singolo elemento coccoide, si trasforma in baston-
cello che costituirà la forma principale della microcolonia, per ritrasformarsi suc-
cessivamente in forme coccoidi [25].
La presenza di batteri del genere Micrococcus, ipotizzata sin dall’inizio è
stata confermata. Infine, non è da escludere la presenza di batteri corineformi
appartenenti al genere Cellulomonas, aerobi facoltativi con morfologia variabi-
le.
I saggi d’inibizione della crescita batterica hanno fornito informazioni sul-
l’efficacia e sulla concentrazione opportuna di biocidi da utilizzare nell’ambito di
questo progetto di restauro e, nello stesso tempo. mostrato quanto sia impor-
tante la caratterizzazione delle specie batteriche presenti in un consorzio
microbico. Infatti, differenti specie batteriche presentano diversa sensibilità ad
uno stesso biocida, come mostrato in questo lavoro dal differente alone d’inibi-
zione della crescita di Arthrobacter eBacillus rispetto a Escherichia coli. Il ricor-
so alle biotecnologie molecolari, per una rapida e precisa caratterizzazione
delle specie batteriche presenti, risulta quindi uno dei punti di partenza in un
progetto di conservazione/ restauro perché fornisce informazioni sostanziali
anche per la scelta del biocida e dell’opportuna concentrazione da utilizzare.
Il cantiere di restauro di Fontana Pretoria ha rappresentato un vero e pro-
prio laboratorio di ricerca, in continua evoluzione, che ha permesso lo sviluppo
d’interessanti applicazioni biotecnologiche per una diagnosi rapida e specifica
di comunità microbiche in opere d’arte marmoree e, senz’altro tali applicazioni,
vista la loro potenzialità [26], costituiscono una metodologia di rivelazione delle
colonizzazioni microbiche da utilizzare dal punto di vista della prevenzione e
conservazione di un bene culturale.
Ringraziamenti
Particolari ringraziamenti vanno alla Direzione dei Lavori (Dott.ssa M.P.
Demma, Arch. Giuseppina Favara) per la continua e proficua collaborazione e
alla Soprintendenza BB.CC. di Palermo per avere parzialmente finanziato que-
sto lavoro di analisi e ricerca. Inoltre, si ringrazia il Prof. F. Tomaselli e l’Arch. L.
Smecca per la preziosa collaborazione.
Studio effettuato nell’ambito dell’attività di ricerca (ex 60%) MUR.
Summary
The patina represents a superficial natural alteration of the constituting matter of the work of art. It
emerges from the natural and usual stabilization process that the materials of the surface undergo
because of the interaction with outdoor agents characterizing the surrounding environment. Besides,
it is not linked to an obvious phenomenon of degradation that can be noticed through the change in
the original colour of the matter.
This is what we intend when we talk about biological patina usually generated by macro and/or
micro-organic colonization (fungi, bacteria, alga) which contributes to surface bio-deterioration and
thus lead to the formation of orange, red or even brown and dark pigmented areas.
The presence of chromatic alterations (rose-coloured areas), as a consequence of bacterial colo-
nization, was most particularly pointed out in different sites, such as in the marble slabs on the
facades of both the Cathedral of Siena (Duomo di Siena) and the Certosa of Pavia.
The present study shows an example of chromatic alteration of the surface of marble works due to
bacterial colonization.
Riassunto
La patina, naturale alterazione superficiale della materia che costituisce un’opera d’arte, è dovuta al
normale processo d’assestamento che i materiali costitutivi della superficie subiscono per l’intera-
zione con gli agenti esterni caratterizzanti l’ambiente in cui è conservata, non collegabile a manife-
sti fenomeni di degradazione e percepibili come una variazione del colore originario del materiale.
Questo è il caso delle patine biologiche, dovute generalmente a colonizzazioni da macro e/o micror-
ganismi (funghi, batteri, alghe) che, inducendo il biodeterioramento della superficie, portano alla for-
mazione di aree con pigmentazione arancione, rossa, sino al bruno e al nero. In particolare, la pre-
senza di alterazioni cromatiche (aree rosate), conseguenza di colonizzazioni batteriche, è stata evi-
denziata in diversi siti come nelle lastre marmoree delle facciate del Duomo di Siena e della Certosa
di Pavia.
Lo studio qui riportato mostra un esempio d’alterazione cromatica della superficie di manufatti mar-
morei indotto dalla colonizzazione batterica.
Résumé
La patine, altération naturelle superficielle de la matière qui constitue une oeuvre d’art, dérive du
processus naturel de stabilisation que les matériaux qui constituent la surface subissent du fait de
l’interaction avec les agents extérieurs caractérisant le milieu dans lequel l’œuvre est exposée. Elle
n’est pas liée à un phénomène évident de dégradation perceptible par une variation de la couleur
d’origine du matériau. C’est ce que nous entendons lorsque nous parlons de patines biologiques,
qui sont généralement dues à des colonisations de macro et/où microorganismes (champignons,
bactéries, algues) qui entraînent la biodétérioration de la surface, d’où résulte la formation de zones
de pigmentation orange, rouge, voire même brune ou noire. La présence d’altérations chromatiques
(zones rosées) suite aux colonisations de bactéries a tout particulièrement été mise en lumière sur
différents sites, comme c’est par exemple le cas sur les plaques en marbre des façades du Duomo
à Siena et de la Certosa à Pavia.
L’étude présente un exemple d’altération chromatique de la surface des oeuvres en marbre du fait
de la colonisation de bactéries.
Zusammenfassung
Die Schicht, natürliche oberflächliche Veränderung des Stoffs, der ein Kunstwerk bildet, ist von dem
üblichen Setzung Verfahren verursacht, dem die konstitutiven Stoffen der Oberfläche sich unterzie-
hen, wegen der Interaktion mit den äußeren Agenten, die die Umgebung charakterisieren, in der es
aufbewahrt wird. Sie ist nicht verbindenbar zu Phänomena von Degradierung, die als ein Wechsel
der Originalfarbe wahrnehmbar sind. Das ist der Fall der biologischen Schichten, die gewöhnlich von
der Besiedelung aus Makro- und/oder Mikroorganismen (Pilze, Bakterien, Algen) verursachte sind,
die zur Entstehung von Zonen mit orange, roter, sogar brauner und schwarzer Pigmentierung brin-
gen, weil sie zur Biobeschädigung der Oberfläche verleiten. Besonders ist das Vorhandensein von
Farbenwechseln (rosa Zonen), Folge von Bakterienbesiedelungen, in verschiedenen Stellen, als in
den Marmorplatten der Fassade des Doms von Siena und der Kartause von Pavia, hervorgehoben
worden.
Die hier wiedergegebene Studie zeigt ein Beispiel von Farbenwechsel der Oberfläche von
Marmormanufakturen, der von der Bakterienbesiedelung verleitet worden ist.
Resumen
La pátina, o sea la natural alteración superficial de la materia que constituye una obra de arte, se
debe al proceso normal de asentamiento que los materiales que constituyen la superficie sufren por
la interacción con los agentes externos del ambiente en que se conserva, sin que sea necesaria-
mente en relación con manifiestos fenómenos de degradación perceptibles como variación del color
originario del material. Es éste el caso de las pátinas biológicas, debidas por lo general a coloniza-
ciones de macro y/o microorganismos (hongos, bacterias, algas) que inducen al biodeterioro de la
superficie y llevan a la formación de áreas con pigmentación naranja, roja, hasta parda y negra. En
particular, la precencia de alteraciones crómaticas (áreas rosadas) por colonizaciones bactéricas se
ha relevado en diferentes sitios, como por ejemplo en las losas de mármol de las fachadas de la
#*
F%Palla! E% Tartamella & Chromatic alteration on marble surfaces analysed by molecular biology tools
#"
Conservation Science in Cultural Heritage
... Autotrophic (photolithotrophs and chemolithotrophs) and heterotrophic bacteria have also been isolated from stonework and since many of these microorganisms contain pigments (β-carotene, α-bacterioruberin, and derivatives) and salinixanthin in their cell membranes, their proliferation can produce typical rosy stains on the stone surface [10,13,14]. Furthermore, the deterioration is also the direct result of atmospheric pollution due to soot, grease, dust, etc., implying the deposition of suspended particles on the stonework surface, enhancing the SO 2 deposition, a very reactive compound with a significant corrosive effect on marble surface [15,16]; especially for outdoor monument, anthropogenic factors must be also considered [17]. ...
... Cyanobacteria, algae, and lichens contribute to the weathering of stone in humid as well as in semiarid and arid environments [48][49][50]. Furthermore, cell compounds such as chlorophyll, carotenoid, and melanin may generate chromatic alteration from yellow, orange, and red to brown [10,13,51]. ...
... The photosynthetic microfl ora, algae, cyanobacteria, lichens, mosses, vascular plants on stones, represent a complex ecosystem that develops depending on environmental conditions and the physical and chemical properties of the material. These initial populations can also promote the growth of other communities and can be involved in the biodeterioration of artifacts frequently enhanced by the indirect action of insects and other animals [3][4][5]. Biological decay and the intensity of biodeterioration processes are strongly infl uenced by water availability, and is determined by material-specifi c parameters, such as porosity and permeability, environmental conditions of the site and exposure of the object [6]. ...
... The sampling in proximity of the coloured patinas was justifi ed by the fact that microorganisms contribute both to chemical-physical alteration of the constituent materials and to the formation of pigmented patina on the surfaces. These micro-organisms are able to produce coloring pigments, such as chlorophyll, carotenoid, melanin, that may generate chromatic variations towards a yellow, orange, red, or even brown colour [5]. Table 1 contains a description of the collected samples. ...
Article
Full-text available
Stone works of art located outdoors are exposed to natural deterioration, due to several physical, chemical and biological factors. Biological macro- and micro-systems (e.g. weeds, insects, algae, mosses, fungi and bacteria) may induce the biodeterioration of stone materials. In February 2014, the state of conservation of the Fountain of the two Dragons in Palermo was examined, during which time biological colonization in some areas of the fountain and statues, was also detected. The monument represents an excellent substrate for the development and growth of microrganisms and organisms that need a continuous supply of water. Direct solar irradiance promotes the development of photoautotrophic organisms, bryophyte flora, in addition to several microbial genera, responsible for pigmentation, discoloring, efflorescence. After autotrophic colonization, some organisms find an ideal habitat also during wintertime, including two species of gastropods and two species of Hemiptera, omnivorous, a species of Collembola, mostly fungivorous. This interdisciplinary study has enabled the detection and identification of different biological communities, providing information for a subsequent project of preventive conservation of the fountain and its surroundings.
... Microorganisms and insects have a disastrous impact on the biodiversity, cultural heritage and economy of a geographic area [1][2][3][4]. However, in recent decades, the negative effects of invasive alien species (IAS), including both animal and plant or microorganisms occurring outside their natural distribution range, are generally not well known. ...
... I microrganismi e gli insetti hanno un impatto disastroso sulla biodiversità, sul patrimonio culturale e sull'economia di un'area geografica [1][2][3][4]. Tuttavia negli ultimi decenni gli effetti negativi delle specie aliene invasive (IAS), sia animali che piante o microrganismi, che si trovano al di fuori del range della loro distribuzione naturale, non sono generalmente molto conosciuti. ...
Article
Full-text available
Stone cultural heritage materials are at risk of bio-deterioration caused by diverse populations of microorganisms living in biofilms. The microbial metabolites of these biofilms are responsible for the deterioration of the underlying substratum and may lead to physical weakening and discoloration of stone [1,18]. Fungal ability in producing pigments and organic acids have a crucial role in the discoloration and degradation of different types of stone in cultural heritage objects. Additionally, stone objects may support the communities of microorganisms that are active in the biodeterioration process. This investigation focuses on the mycological analyses of microbial biofilm from the Bhimkichak temple, in Malhar of Bilaspur District of Chhattisgarh state which is made of sandstone, and is heavily colonized by fungi. Eight fungal species on the sandstone were isolated. Aspergillus sp. was observed, a common species in the stone structure of this monument. The identified micro fungi cause discoloration as well as mechanical exfoliation of the building stone material which was analyzed through mechanical hyphae penetration and production of dark pigments and organic acids.
... Likewise, some organisms produce organic acids which can significantly change the pH and/or promote the chelation of metal ions (Edwards et al., 2003). As a result, biomineralizations associated with metabolic products such as gypsum, oxalates, carbonates, silicates, iron/manganese oxides, and clays are frequent (Warscheid & Braams, 2000;Tratebas, 2004;Palla & Tartamella, 2007;Madigan et al., 2008;Saiz-Jimenez et al., 2011;Lepinay et al., 2017). ...
Article
Full-text available
This work aims discussing the contribution of environmental and technological factors in rock art painting preservation, based on a 3-year experimental program and two archaeological cases from Patagonia (South America). Concerning technological factors, microscopic information of experimental and archaeological contexts indicate that fine-grained pigments have a better preservation potential than coarse-grained ones, likely related to the high binder adsorption capacity of silty and clay size particles, resulting in a strong pigment agglutination and substrate adherence. Mechanical entrapment/translocation of such small particles into the substrate further contributes to preservation. The experiment also evidences that blood-bearing paints present preservation advantages over fat/water-based ones, probably due to clotting and drying processes which agglutinate pigments and seal rock voids, avoiding binder migration. In contrast, experimental gypsum- and, to a lesser extent, charcoal-based paints show a rapid and significant deterioration, particularly in the temperate and humid context. The low archaeological expectancy derived from these results is supported by the scarce and/or ambiguous regional representation of these black pigments in ancient Patagonian paintings. Among natural factors, water-related processes (i.e., rainfall, snow, freezing and water infiltration) play a decisive role in the physicochemical paint degradation, also favoring bioactivity. Raman spectroscopy of neoformed white crystals in experimental paints may evidence, in a short term, a first stage of the profuse biomineralizations archaeologically observed, associated with lichens, fungus, and endolithic organisms. Finally, sheep rubbing and wind abrasion are proposed as the main agents affecting vertical frequencies and integrity of archaeological motifs at the cave and open-air contexts, respectively, whereas differences related to cardinal insolation likely impact in frequencies, motif color and weathering stages at the open-air site too.
... The advantage of using live bacteria cells lies in the versatility of bacteria, which have the ability to produce a wide range of molecules and enzymes, including inducible enzymes, which are only produced by the cell under specific conditions or in the presence of certain substrates. Bacteria show enormous potential in inducing chemical transformations, both because they use the substrate directly as a carbon source and because they release active enzymes into the surrounding environment [3]. Bio-cleaning combines the characteristics of efficacy, selectivity and gradualness, respect for the material, compatibility with the health of the operator and the environment, versatility. ...
Article
Full-text available
The masterpiece this work deals with is the tomb of Lorenzo de’ Medici, Duke of Urbino, completed by Michelangelo around 1533 in the New Sacristy of Medici chapel in Florence. Sacristy underwent an extensive restoration (2013–2020) and Lorenzo’s sarcophagus was addressed in the last phase (2019–2020). The unique history and the mediocre state of conservation of the marble may be related to body decomposition processes that, according to the documentary research, required a scientific approach to tailor an appropriate intervention. The sarcophagus underwent a bio-cleaning procedure, using bacteria belonging to the ENEA-MIRRI (Microbial Resource Research Infrastructure Italian Node) collection. Spectroscopic analysis (FTIR in ATR and in TR—total reflection—mode and XRF) and microscopic analyses allowed a correct diagnosis of the composition of the coherent deposits, guiding the selection of appropriate bacterial strains. Deposits were composed of gypsum, calcium oxalate, calcium phosphates and proteins. Following a laboratory screening and a preliminary test on-site, the three strains, Serratia ficaria SH7, Pseudomonas stutzeri CONC11 and Rhodococcus sp. ZCONT, immobilised in an appropriate supportant gel, were selected by the quality of cleaning obtained. Two applications of the micro-packs, containing each individual strain, were able to remove the centuries-old deposits within 48 h. The bio-cleaning was selective, gradual and respectful of the marble, in accordance with the restorers’ opinion and reflecting the principles of sustainability.
... For this reason, marble monuments in humid climates will always lose any polished finish. This decay process is accelerated in polluted environments, where sulfur dioxide and nitrogen oxide in the atmosphere combine with water to form sulfuric and nitric acids [5][6][7][8]. ...
Article
Full-text available
The aim of the paper consists in the study of three Romanian types of marble (Ruschita, Albesti, Carrara) with different compositions in different temperature conditions, for different periods of time. The three samples were exposed to two different types of treatments: 25 cycles of freeze-thaw (according to SR EN 12371) and 3 cycles of exposure to high temperatures (400 °C for 1 hour). Following the freeze-thaw cycles, small differences in chromatic parameters could be observed (∆E = 2.2 for Carrara Italia marble and ∆E = 7.2 for Rușchița pink marble). The freezing coefficient for all samples is low (0.016% - 0.029%). Following exposure to high temperature treatment, the samples show large differences in chromatic parameters (∆E = 43.47 for Albesti marble) and significant changes in gloss. The surface of the samples showed cracks and microcracks. Based on the results of this study, the following conclusions can be drawn: Thermal cycles can cause the mechanical disintegration of the outer part of the marble, starting from the discontinuities contained in the rock and between the faces between the different minerals that form the stone. Exposure to high temperatures will result in a loss of adhesion between the surface grains on the sample surface. The degradation processes have been investigated.
... The marble areas showed an expanding and intensifying reddish chromatic alteration. As reported in the literature (Krumbein 2003), these chromatic alterations could be related to bacterial taxa that we identify in this study by molecular investigation (Palla and Tartamella 2007). Non-invasive sampling has been carried out on marble statues by sterile cotton swabs soaked with NaCl-Tween20 solution. ...
Chapter
In this chapter, case studies related to biodeterioration, bioaerosol, biocide and biocleaning are reported. The aim is highlighting the role of biology and biotechnology tools for the preventive conservation of organic and inorganic artefacts, understanding how traditional as well as innovative methods can help the conservationists to develop integrated strategies considering works of art/environment/humans as a dynamic system. Particularly, based on the experience acquired during the researches of Laboratory of Biology and Biotechnology for Cultural Heritage (LaBBCH), the authors suggest several approaches to reveal and identify biological systems able to induce biodeterioration of cultural assets, also focusing on bioaerosols in indoor environment to assess the risk for historical-artistic collections. Finally, novel bioactive molecules have been applied to perform biocleaning protocols or to control of microbial colonisation, in accordance with conservative restoration procedures and safety for both the environment and operators, as well as nanomaterial (halloysite nanotubes) to consolidate and protect wooden archaeological finds.KeywordsBenzalkonium chlorideBiological patinaBlack crustNanotubesPlant extract
... Identification of microorganisms colonizing mural paintings is an important step in putting forward sound conservation strategies, but due to problems imposed by morphological methods in identification, molecular methods based on 16S rDNA sequence analysis have been used to identify Actinomycetes isolated from deteriorated stones and mural paintings, confirming the morphological and biochemical identification keys [7][8][9][10][11][12]. ...
Article
Full-text available
Streptomyces are involved significantly in the deterioration of mural paintings in cooperation with other deterioration agents, salts in particular. Several salts were detected in deteriorated mural paintings in ancient Egyptian tombs from different sources. The sources of these salts are the composition of building stone and leakage of underground water containing salt ions from the soil to the walls of the tombs
... The marble areas showed an expanding and intensifying reddish chromatic alteration. As reported in the literature (Krumbein 2003), these chromatic alterations could be related to bacterial taxa that we identify in this study by molecular investigation (Palla and Tartamella 2007). Non-invasive sampling has been carried out on marble statues by sterile cotton swabs soaked with NaCl-Tween20 solution. ...
Book
This book provides detailed insights into the role of microorganisms and microbial products in biodeterioration, conservation and restoration of cultural heritage. Topics to be discussed are microbial colonization and their growth control on both artworks and aerosol of indoor environments such as libraries or museums, as well as human health hazard from exposure to microbial agents. In addition innovative biotechnological protocols and strategies for the removal of undesired layers on artwork surfaces are described in detail. Also the advances and perspectives in this emerging biotechnological field are discussed, supported by the latest original findings. © Springer International Publishing Switzerland 2017. All rights reserved.
... The marble areas showed an expanding and intensifying reddish chromatic alteration. As reported in the literature (Krumbein 2003), these chromatic alterations could be related to bacterial taxa that we identify in this study by molecular investigation (Palla and Tartamella 2007). Non-invasive sampling has been carried out on marble statues by sterile cotton swabs soaked with NaCl-Tween20 solution. ...
Chapter
In this chapter, case studies related to biodeterioration, bioaerosol, biocide and biocleaning are reported. The aim is highlighting the role of biology and biotechnology tools for the preventive conservation of organic and inorganic artifacts, understanding how traditional as well as innovative methods can help the conservationists to develop integrated strategies considering works of art/environment/humans as a dynamic system. Particularly, based on the experience acquired during the researches of Laboratory of Biology and Biotechnology for Cultural Heritage (LaBBCH), the authors suggest several approaches to reveal and identify biological systems able to induce biodeterioration of cultural assets, also focusing on bioaerosols in indoor environment to assess the risk for historical-artistic collections. Finally, novel bioactive molecules have been applied to perform biocleaning protocols or to control of microbial colonisation, in accordance to conservative restoration procedures and safety for both the environment and operators.
Article
Full-text available
We investigated the presence of bacteria in a library environment and on stored books, performing morphological and molecular analyses. Isolated bacteria were characterised by PCR amplification of 16S rRNA locus and 16S-23S Intergenic Transcribed Spacer (ITS), followed by sequence determination and comparison. The results from SEM observation and molecular analysis showed the prevalence of bacteria belonging to the family Micrococcaceae, distinguished as Kocuria rosea, Arthrobacter nicotianae, Micrococcus luteus and Curtobacterium flaccumfaciens. Moreover, C. flaccumfaciens showed a high cellulolytic activity constituting a risk for paper artwork degradation.
Article
Full-text available
Black fungi and especially meristematically growing yeastlike forms have been known instead as human, animal, and plant pathogenic organisms. Recently we found and isolated such fungi in numerous instances from antique marble and historical limestone buildings at the Acropolis of Athens, the island of Corfu, and from sites in Germany, Italy, Portugal, Russia, Crimea, Spain, and Namibia. The so-called black yeast are slow-growing and difficult to isolate and identify. In field observations, culture experiments on marble slices, and further analyses by SEM and EPR, we demonstrated that black fungi play an important role in the destruction of marble and limestone. They are ubiquitous on monuments under certain climatic and microclimatic conditions. Evidence from natural outcrops in nonpolluted or eutrophicated atmospheres indicates that global or local climate shifts are more important in biogenic color changes of monuments and natural outcrops than air pollution. In principle, it is concluded that many if not most of the colour changes on architectural surfaces are caused by microbiota. -from Authors
Article
Full-text available
The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic, and statistical refinements permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is described for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position Specific Iterated BLAST (PSLBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities.
Article
Full-text available
The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
Article
Abstract We report the presence of Actinomycetes in degraded sandstone monuments, and on examination of 173 samples we identified Nocardia restricta as particularly prevalent. In our procedure, the extracted bacterial DNA was the template in polymerase chain reaction (PCR) experiments in order to amplify specific regions of the 16S rDNA. The fidelity of amplified fragment was confirmed by nested-PCR or restriction enzyme specific cutting. To confirm the specificity of the assay, the amplified fragments were cloned in a convenient plasmid vector, the sequence analysed and compared with the expected DNA genomic portion.
Molecular characterisation of lead-resistant isolates from Certosa di Pavia red strains
  • Abbruscato P Sorlini C
ABBRUSCATO P., SORLINI C., ZANARDINI E. 2003, Molecular characterisation of lead-resistant isolates from Certosa di Pavia red strains, in C. Saiz-Jimenez (ed), Molecular Biology and Cultural Heritage, Lisse/Abingdon/Exton (PA)/Tokyo: A.A: Balkema Publishers, 109-113.
Characterisation of bacterial communities on stone monuments by molecular biology tools
  • Palla F Anello L
  • Pecorella S Russo R
PALLA F., ANELLO L., PECORELLA S., RUSSO R., DAMIANI F. 2003, Characterisation of bacterial communities on stone monuments by molecular biology tools. C. Saiz-Jimenez (ed), Molecular Biology and Cultural Heritage, Lisse/Abingdon/Exton (PA)/Tokyo: A.A: Balkema Publishers, 115-118.
Patination of marble and granite by microbial communities
STERFLINGER K., KRUMBEIN W.E., RULLKOTTER J. 1999, Patination of marble and granite by microbial communities, Z. dtsch. Geol. Gesellsch., 150, 299- 311.
On the Question of Biogenic Coulour Changes of Mediteranean Monuments in
  • Urzí C E Krumbein W
URZÍ C., KRUMBEIN W.E., WARSCHEID T. 1992, On the Question of Biogenic Coulour Changes of Mediteranean Monuments in D. DECROUEZ, J. CHAMAY and F. ZEZZA (eds.), Geneve, Proceedings 2 nd International Symposium. Musée d'art et d'historie, 397-420.