Dendritic vulnerability in neurodegenerative disease: Insights from analyses of cortical pyramidal neurons in transgenic mouse models

M949, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA.
Brain Structure and Function (Impact Factor: 5.62). 02/2010; 214(2-3):181-99. DOI: 10.1007/s00429-010-0244-2
Source: PubMed


In neurodegenerative disorders, such as Alzheimer's disease, neuronal dendrites and dendritic spines undergo significant pathological changes. Because of the determinant role of these highly dynamic structures in signaling by individual neurons and ultimately in the functionality of neuronal networks that mediate cognitive functions, a detailed understanding of these changes is of paramount importance. Mutant murine models, such as the Tg2576 APP mutant mouse and the rTg4510 tau mutant mouse have been developed to provide insight into pathogenesis involving the abnormal production and aggregation of amyloid and tau proteins, because of the key role that these proteins play in neurodegenerative disease. This review showcases the multidimensional approach taken by our collaborative group to increase understanding of pathological mechanisms in neurodegenerative disease using these mouse models. This approach includes analyses of empirical 3D morphological and electrophysiological data acquired from frontal cortical pyramidal neurons using confocal laser scanning microscopy and whole-cell patch-clamp recording techniques, combined with computational modeling methodologies. These collaborative studies are designed to shed insight on the repercussions of dystrophic changes in neocortical neurons, define the cellular phenotype of differential neuronal vulnerability in relevant models of neurodegenerative disease, and provide a basis upon which to develop meaningful therapeutic strategies aimed at preventing, reversing, or compensating for neurodegenerative changes in dementia.

Download full-text


Available from: Dara L Dickstein, Jan 20, 2014
  • Source
    • "Following the well-known relationship between form and function in biological systems, recent in vitro and in vivo studies have demonstrated that the morphology of spines relates closely to the function and plasticity of the synapses they belong to (Yuste et al., 2000; Trachtenberg et al., 2002; Mizrahi et al., 2004; Segal, 2005; Kasai et al., 2010). For example, the volume of the spine head is directly proportional to the area of the postsynaptic density and the number of synaptic vesicles docked at the presynaptic active zone (Harris and Stevens, 1989; Schikorski and Stevens, 1999), the number of postsynaptic receptors (Nusser et al., 1998), and hence to the size of synaptic currents and synaptic strength (Yuste and Bonhoeffer, 2001; Luebke et al., 2010). Two-photon uncaging of glutamate on large spines evoked "
    [Show abstract] [Hide abstract]
    ABSTRACT: Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders.
    Full-text · Article · Sep 2014 · Frontiers in Neuroanatomy
  • Source
    • "Spines appear and disappear through life, but their turnover rate declines with the age and is regulated by the neuronal activity [18]. Dendritic spines undergo structural modifications when the synaptic strength is experimentally modified (e.g., by evoking long-term potentiation or long-term depression) [18] [22] [24]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several animal models of Alzheimer’s disease have been used in laboratory experiments. Intrahippocampal injection of fibrillar amyloid-beta (fAβ) peptide represents one of the most frequently used models, mimicking Aβ deposits in the brain. In our experiment synthetic fAβ 1–42 peptide was administered to rat hippocampus. The effect of the Aβ peptide on spatial memory and dendritic spine density was studied. The fAβ 1–42-treated rats showed decreased spatial learning ability measured in Morris water maze (MWM). Simultaneously, fAβ 1–42 caused a significant reduction of the dendritic spine density in the rat hippocampus CA1 region. The decrease of learning ability and the loss of spine density were in good correlation. Our results prove that both methods (MWM and dendritic spine density measurement) are suitable for studying Aβ-triggered neurodegeneration processes.
    Full-text · Article · Jun 2014 · BioMed Research International
  • Source
    • "Deficits in dendritic spine morphology have been implicated in the pathogenesis of numerous neurological disorders (Reviewed in [60]). Cortical pyramidal neurons have a single apical dendrite that extends towards the pial surface of the neocortex before undergoing extensive branching. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal ceroid lipofuscinoses (NCLs; also known collectively as Batten Disease) are a family of autosomal recessive lysosomal storage disorders. Mutations in as many as 13 genes give rise to ∼10 variants of NCL, all with overlapping clinical symptomatology including visual impairment, motor and cognitive dysfunction, seizures, and premature death. Mutations in CLN6 result in both a variant late infantile onset neuronal ceroid lipofuscinosis (vLINCL) as well as an adult-onset form of the disease called Type A Kufs. CLN6 is a non-glycosylated membrane protein of unknown function localized to the endoplasmic reticulum (ER). In this study, we perform a detailed characterization of a naturally occurring Cln6 mutant (Cln6(nclf)) mouse line to validate its utility for translational research. We demonstrate that this Cln6(nclf) mutation leads to deficits in motor coordination, vision, memory, and learning. Pathologically, we demonstrate loss of neurons within specific subregions and lamina of the cortex that correlate to behavioral phenotypes. As in other NCL models, this model displays selective loss of GABAergic interneuron sub-populations in the cortex and the hippocampus with profound, early-onset glial activation. Finally, we demonstrate a novel deficit in memory and learning, including a dramatic reduction in dendritic spine density in the cerebral cortex, which suggests a reduction in synaptic strength following disruption in CLN6. Together, these findings highlight the behavioral and pathological similarities between the Cln6(nclf) mouse model and human NCL patients, validating this model as a reliable format for screening potential therapeutics.
    Full-text · Article · Nov 2013 · PLoS ONE
Show more