A constitutive model for the mechanical characterization of the plantar fascia

ArticleinConnective tissue research 51(5):337-46 · February 2010with31 Reads
DOI: 10.3109/03008200903389127 · Source: PubMed
Abstract
A constitutive model is proposed to describe the mechanical behavior of the plantar fascia. The mechanical characterization of the plantar fascia regards the role in the foot biomechanics and it is involved in many alterations of its functional behavior, both of mechanical and nonmechanical origin. The structural conformation of the plantar fascia in its middle part is characterized by the presence of collagen fibers reinforcing the tissue along a preferential orientation, which is that supporting the major loading. According to this anatomical evidence, the tissue is described by developing an isotropic fiber-reinforced constitutive model and since the elastic response of the fascia is here considered, the constitutive model is based on the theory of hyperelasticity. The model is consistent with a kinematical description of large strains mechanical behavior, which is typical of soft tissues. A fitting procedure of the constitutive model is implemented making use of experimental curves taken from the literature and referring to specimens of human plantar fascia. A satisfactory fitting of the tensile behavior of the plantar fascia has been performed, showing that the model correctly interprets the mechanical behavior of the tissue in the light of comparison to experimental data at disposal. A critical analysis of the model with respect to the problem of the identification of the constitutive parameters is proposed as the basis for planning a future experimental investigation of mechanical behavior of the plantar fascia.
    • "Experimental stress–strain data for each constituent of the abdomen are exploited to fit the corresponding constitutive model. The optimum set of constitutive parameters is obtained by means of an optimization algorithm that minimizes the difference between experimental data and numerical results (Corana et al., 1987; Natali et al., 2010). Literature sources, graphs of data fitting and corresponding constitutive parameters are reported in the following. "
    [Show abstract] [Hide abstract] ABSTRACT: The present work aims to assess, via numerical modeling, the global passive mechanical behavior of the healthy abdominal wall under the action of pressures that characterize different daily tasks and physiological functions. The evaluation of a normal range of intra-abdominal pressure (IAP) during activities of daily living is fundamental because pressure alterations can cause several adverse effects. At this purpose, a finite element model is developed from literature histomorphometric data and from diagnostic images of Computed Tomography (CT), detailing the different anatomical regions. Numerical simulations cover an IAP up to the physiological limit of 171 (0.0223 MPa) mmHg reached while jumping. Numerical results are in agreement with evidences on physiological abdomens when evaluating the local deformations along the craniocaudal direction, the transversal load forces in different regions and the increase of the abdominal area at a IAP of 12 mmHg. The developed model can be upgraded for the investigation of the abdominal hernia repair and the assessment of prostheses mechanical compatibility, correlating stiffness and tensile strength of the abdominal tissues with those of surgical meshes.
    Article · Apr 2016
    • "The main purpose of this study was to explore the spring function of the PLF in running by integrating the effects of MLA compression and MPJ excursion. Although the elastic energy storage potential of the PLF has been acknowledged throughout the literature [3, 6, 7], a more detailed analysis of its in vivo functionality during running is lacking. Our findings suggest the PLF conforms to the general stretch-shorten model of elastic structures (i.e. "
    [Show abstract] [Hide abstract] ABSTRACT: Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.
    Full-text · Article · Apr 2016
    • "MPa, and í µí»¼ = 10.397. These constitutive parameters are obtained by a fitting procedure of the hyperelastic model to experimental data of the plantar aponeurosis elastic response, taken from the literature [5, 13]. "
    [Show abstract] [Hide abstract] ABSTRACT: The attention is focused on the viscoelastic behavior of human plantar aponeurosis tissue. At this purpose, stress relaxation tests were developed on samples taken from the plantar aponeurosis of frozen adult donors with age ranging from 67 to 78 years, imposing three levels of strain in the physiological range (4%, 6%, and 8%) and observing stress decay for 240 s. A viscohyperelastic fiber-reinforced constitutive model with transverse isotropy was assumed to describe the time-dependent behavior of the aponeurotic tissue. This model is consistent with the structural conformation of the tissue where collagen fibers are mainly aligned with the proximal-distal direction. Constitutive model fitting to experimental data was made by implementing a stochastic-deterministic procedure. The stress relaxation was found close to 40%, independently of the level of strain applied. The agreement between experimental data and numerical results confirms the suitability of the constitutive model to describe the viscoelastic behaviour of the plantar aponeurosis.
    Full-text · Article · Feb 2014
Show more