Article

Sampling the N-terminal proteome of human blood

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 02/2010; 107(10):4561-6. DOI: 10.1073/pnas.0914495107
Source: PubMed

ABSTRACT

The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum.

Full-text preview

Available from: pnas.org
  • Source
    • "advantage that all naturally modified protein N-or C-termini are retained, enabling profiling of known and discovery of new terminal modifications, irrespective of their chemical identity (Fig. 2A). Although most published terminomics studies focus on protease substrate identification in relatively simple in vitro or cell-based assays, recent studies demonstrated the utility of N-terminomics approaches for characterization of protein termini in complex tissues, including inflamed skin [7], platelets [54], plasma [55], human erythrocytes [33], and human placenta (own unpublished data). Streamlined terminomics workflows have recently been established for proteome-wide mapping of protein termini as part of the human proteome project [33] [56]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Early accurate diagnosis and personalized treatment are essential in order to treat complex or fatal diseases such as cancer and autoimmune, cardiovascular and neurodegenerative diseases. To realize this vision, new diagnostic and prognostic biomarkers are urgently required. MS-based proteomics is the most promising approach for protein biomarker identification, but suffers in clinical translation of biomarker candidates that show only quantitative differences from normal tissue. Indeed, success in translating proteomic data to biomarkers in the clinic has been disappointing. Here, we propose that protein termini provide a new opportunity for biomarker discovery due to qualitative differences in intact and new protein termini between diseased and normal tissues. Altered proteolysis occurs in most pathologies. Disease- and process-specific protein modifications, including proteolytic processing and subsequent modification of the terminal amino acids, frequently lead to altered protein activity that plays key roles in the disease process. Thus, mapping of ensembles of characteristic protein termini provides a proteolytic signature of high information content that shows both quantitative and most importantly qualitative differences in different diseases and stage of disease. These unique protein biomarkers have the added benefit of being mechanistically informative by revealing the activity state of the bioactive protein. Moreover, proteome-wide isolation of protein termini leads to generalized sample simplification, thereby enabling up to three orders of magnitude lower LODs compared to traditional shotgun proteomic approaches. We introduce the potential of protein termini for biomarker discovery, briefly review methods enabling large-scale studies of protein termini, and discuss how these may be integrated into a termini-oriented biomarker discovery pipeline from discovery to clinical application.
    Full-text · Article · Jun 2014 · PROTEOMICS - CLINICAL APPLICATIONS
  • Source
    • "Nevertheless, the study did not identify any notable differences in mean analyte levels between EDTA plasma and P100 plasma, despite the presence of protease inhibitors in the P100 blood collection tubes. These results are similar to the findings of others using mass spectroscopy and multiplex ELISA methods [18-20]. Enzymatic degradation has been reported to occur during blood collection and processing [5,21]; protease inhibitors have stabilized the proteome in some studies [22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As a part of the longitudinal Chronic Obstructive Pulmonary Disease (COPD) study, Subpopulations and Intermediate Outcome Measures in COPD study (SPIROMICS), blood samples are being collected from 3200 subjects with the goal of identifying blood biomarkers for sub-phenotyping patients and predicting disease progression. To determine the most reliable sample type for measuring specific blood analytes in the cohort, a pilot study was performed from a subset of 24 subjects comparing serum, Ethylenediaminetetraacetic acid (EDTA) plasma, and EDTA plasma with proteinase inhibitors (P100TM). 105 analytes, chosen for potential relevance to COPD, arranged in 12 multiplex and one simplex platform (Myriad-RBM) were evaluated in duplicate from the three sample types from 24 subjects. The reliability coefficient and the coefficient of variation (CV) were calculated. The performance of each analyte and mean analyte levels were evaluated across sample types. 20% of analytes were not consistently detectable in any sample type. Higher reliability and/or smaller CV were determined for 12 analytes in EDTA plasma compared to serum, and for 11 analytes in serum compared to EDTA plasma. While reliability measures were similar for EDTA plasma and P100 plasma for a majority of analytes, CV was modestly increased in P100 plasma for eight analytes. Each analyte within a multiplex produced independent measurement characteristics, complicating selection of sample type for individual multiplexes. There were notable detectability and measurability differences between serum and plasma. Multiplexing may not be ideal if large reliability differences exist across analytes measured within the multiplex, especially if values differ based on sample type. For some analytes, the large CV should be considered during experimental design, and the use of duplicate and/or triplicate samples may be necessary. These results should prove useful for studies evaluating selection of samples for evaluation of potential blood biomarkers.
    Full-text · Article · Jan 2014 · Journal of Translational Medicine
  • Source
    • "UniProt gene identifiers for homologous human genes were obtained for each unique, differentially expressed black bear protein (n = 15) that was identified by MS/MS. A list of the N-terminal serum proteome of human blood (n = 213) was used as the background total gene list [27] because similar data does not exist for the American black bear. The enrichment of each GO category was calculated as the proportion of changed to total proteins for each category. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.
    Full-text · Article · Jun 2013 · PLoS ONE
Show more