Subfractionation of Differentiating Human Embryonic Stem Cell Populations Allows the Isolation of a Mesodermal Population Enriched for Intermediate Mesoderm and Putative Renal Progenitors

Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
Stem cells and development (Impact Factor: 3.73). 02/2010; 19(10):1637-48. DOI: 10.1089/scd.2010.0017
Source: PubMed


Human embryonic stem (ES) cells are pluripotent and are believed to be able to generate all cell types in the body. As such, they have potential applications in regenerative therapy for kidney disease. However, before this can be achieved, a protocol to differentiate human ES cells to mesodermal renal progenitor lineages is required. Reduction of serum concentration and feeder layer density reduction cultures were used to differentiate human ES cells for 14 days. Differentiated ES cells were then fractionated by flow cytometry based on expression of the markers CD24, podocalyxin, and GCTM2 to isolate putative renal cells. These cells up-regulated the expression of the renal transcription factors PAX2, LHX1, and WT1 when compared with unfractionated human ES cells. Immunohistochemical assays confirmed that a subset of cells within this fraction co-expressed nuclear WT1 and PAX2 proteins. Transcriptome profiling also showed that the most differentially up-regulated genes in this fraction preferentially associated with kidney development in comparison with any other lineage. When compared with a transcriptome profile database of urogenital development (GUDMAP), the top 200 differentially up-regulated genes in this fraction strongly clustered into a group of genes associated with the metanephric mesenchyme at E11.5 and the corticonephrogenic interstitium at E15.5 of murine kidney development. Hence, this approach confirms an ability to direct human ES cells toward a renal progenitor state.

Download full-text


Available from: Bruce Aronow
  • Source
    • "The same holds true for induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006), which are similar to hESCs but devoid of at least some of the above problems. The generation of hESC/iPSC-derived mature renal cells (Song et al., 2012) and, more recently, intermediate mesoderm/metanephric mesenchyme (MM) and ureteric bud (UB) renal progenitors (Lam et al., 2014; Lin et al., 2010; Mae et al., 2013; Takasato et al., 2014) has been reported. In principle, patient-specific cells to be used therapeutically could be obtained through reprogramming approaches in which a long-standing interest exists because of the possibility that abundant adult cells can easily be harvested and converted to other cell types (Zhou et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Mar 2015 · Stem Cell Reports
  • Source
    • "Depletion of pluripotent cells from mixed cell populations was performed according to the following procedure. WA09 hESCs were mixed with HDFs or HEMd cells at a ratio of 1:1 to form a mixed cell population consisting of 1 × 106 cells in total. R-Olig2 hESCs were mixed with their differentiated NSC derivatives at the same ratio. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid and dependable methods for isolating human pluripotent stem cell (hPSC) populations are urgently needed for quality control in basic research and in cell-based therapy applications. Using lectin arrays, we analyzed glycoproteins extracted from 26 hPSC samples and 22 differentiated cell samples, and identified a small group of lectins with distinctive binding signatures that were sufficient to distinguish hPSCs from a variety of non-pluripotent cell types. These specific biomarkers were shared by all the 12 human embryonic stem cell and the 14 human induced pluripotent stem cell samples examined, regardless of the laboratory of origin, the culture conditions, the somatic cell type reprogrammed, or the reprogramming method used. We demonstrated a practical application of specific lectin binding by detecting hPSCs within a differentiated cell population with lectin-mediated staining followed by fluorescence microscopy and flow cytometry, and by enriching and purging viable hPSCs from mixed cell populations using lectin-mediated cell separation. Global gene expression analysis showed pluripotency-associated differential expression of specific fucosyltransferases and sialyltransferases, which may underlie these differences in protein glycosylation and lectin binding. Taken together, our results show that protein glycosylation differs considerably between pluripotent and non-pluripotent cells, and demonstrate that lectins may be used as biomarkers to monitor pluripotency in stem cell populations and for removal of viable hPSCs from mixed cell populations.
    Full-text · Article · Sep 2011 · Cell Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies revealed that PI3K/AKT/mTOR signaling is important in the regulation of human embryonic stem cell (hESC) self-renewal and differentiation. However, its action on osteogenic differentiation of hESCs is poorly understood. We tested the effects of pharmacological PI3K/AKT/mTOR inhibitors on their potential to induce osteogenic differentiation of hESCs. Under feeder-free culture conditions, rapamycin (an mTOR inhibitor) potently inhibited the activities of mTOR and p70S6K in undifferentiated hESCs; however, LY294002 (a PI3K inhibitor) and an AKT inhibitor had no effects. Treatment with any of these inhibitors down-regulated the hESC markers Oct4 and Nanog, but only rapamycin induced the up-regulation of the early osteogenic markers BMP2 and Runx2. We also observed that hESCs differentiated when treated with FK506, a structural analog of rapamycin, but did not exhibit an osteogenic phenotype. Increases in Smad1/5/8 phosphorylation and Id1-4 mRNA expression indicated that rapamycin significantly stimulated BMP/Smad signaling. After inducing both hESCs and human embryoid bodies (hEBs) for 2-3 weeks with rapamycin, osteoblastic differentiation was further characterized by the expression of osteoblastic marker mRNAs and/or proteins (osterix, osteocalcin, osteoprotegerin, osteonectin, and bone sialoprotein), alkaline phosphatase activity, and alizarin red S staining for mineralized bone nodule formation. No significant differences in the osteogenic phenotypes of rapamycin-differentiated hESCs and hEBs were detected. Our results suggest that, among these 3 inhibitors, only rapamycin functions as a potent stimulator of osteoblastic differentiation of hESCs, and it does so by modulating rapamycin-sensitive mTOR and BMP/Smad signaling.
    Full-text · Article · Aug 2009 · Stem cells and development
Show more