Cumulative Effect of Multiple Loci on Genetic Susceptibility to Familial Lung Cancer

Washington University, St. Louis, MO 63110, USA.
Cancer Epidemiology Biomarkers & Prevention (Impact Factor: 4.13). 02/2010; 19(2):517-24. DOI: 10.1158/1055-9965.EPI-09-0791
Source: PubMed


Genetic factors play important roles in lung cancer susceptibility. In this study, we replicated the association of 5p15.33 and 6p21.33 with familial lung cancer. Taking into account the previously identified genetic susceptibility variants on 6q23-25/RGS17 and 15q24-25.1, we further determined the cumulative association of these four genetic regions and the population attributable risk percent of familial lung cancer they account for.
One hundred ninety-four case patients and 219 cancer-free control subjects from the Genetic Epidemiology of Lung Cancer Consortium were used for the association analysis. Each familial case was chosen from one high-risk lung cancer family that has three or more affected members. Single nucleotide polymorphisms (SNP) on chromosomal regions 5p15.33, 6p21.33, 6q23-25/RGS17, and 15q24-25.1 were assessed for their associations with familial lung cancer. The cumulative association of the four chromosomal regions with familial lung cancer was evaluated with the use of a linear logistic model. Population attributable risk percent was calculated for each SNP using risk ratio.
SNP rs31489 showed the strongest evidence of familial lung cancer association on 5p15.33 (P = 2 x 10(-4); odds ratio, 0.57; 95% confidence interval, 0.42-0.77), whereas rs3117582 showed a weak association on 6p21.33 (P = 0.09; odds ratio, 1.47; 95% confidence interval, 0.94-2.31). Analysis of a combination of SNPs from the four regions provided a stronger cumulative association with familial lung cancer (P = 6.70 x 10(-6)) than any individual SNPs. The risk of lung cancer was increased to 3- to 11-fold among those subjects who had at least one copy of risk allele at each region compared with subjects without any of the risk factors. These four genetic regions contribute to a total of 34.6% of familial lung cancer in smokers.
The SNPs in four chromosomal regions have a cumulative and significant association with familial lung cancer and account for about one-third of the population attributable risk for familial lung cancer.

Download full-text


Available from: Mariza Andrade
  • Source
    • "adducts ( Zienolddinay et al . , 2009 ) . In the present study , we found that CLPTM1L rs401681 and rs4975616 polymorphisms were similar in magnitude between the cases and controls , although genome wide association studies showed that the 5p15 . 33 locus accounts for the greatest contribution to lung cancer risk in humans ( McKay et al . , 2008 ; Liu et al . , 2010 ) ."
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: This study aimed to explore potential associations between single nucleotide polymorphisms (SNPs) of the x-ray repair cross-complementing group 1 (XRCC1) and cleft lip and palate transmembrane protein 1-like (CLPTM1L) and non-small cell lung cancer (NSCLC) susceptibility in non-smoker Chinese patients. Methods: A total of 200 NSCLC patients and 200 healthy controls with matched age and gender were recruited for genotyping of XRCC1 SNPs (rs2256507 and rs1001581) and CLPTM1L SNPs (rs401681 and rs4975616). Association of these SNPs with NSCLC risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) from multivariate unconditional logistic regression analyses with adjustment for gender and age. Results: The frequencies of genotype and allele in these four loci (rs2256507, rs1001581, rs401681, and rs4975616) were not significantly different between the cases and controls, or between either of the histological subgroups (adenocarcinoma and squamous cell carcinoma) and controls. Conclusions: Although these SNPs are associated with NSCLC risk in patients with a tobacco-smoking habit, this study demonstrated that XRCC1 and CLPTM1L gene SPNs are not linked with NSCLC risk in non-smoking patients, indicating that molecular mechanisms of NSCLC betwee tobacco smokers and non-smokers may be different. Future studies are needed to uncover the underlying molecular mechanisms for NSCLC in non-smokers.
    Preview · Article · Sep 2013 · Asian Pacific journal of cancer prevention: APJCP
  • Source
    • "A recent study found that a genetic variant within the CLPTM1L gene (rs402710) is associated with the accumulation of DNA adducts in tumor adjacent lung tissue [4]. This same SNP, among others in the region of the CLPTM1L and TERT genes is associated with risk of lung cancer [5], [6], [7]. In a recent study on cervical cancer integrating gene dosage and expression data, the CLPTM1L/TERT locus was found to have copy number gain in tumors and expression patterns that correlated with copy number gain [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cleft Lip and Palate Transmembrane Protein 1-Like (CLPTM1L), resides in a region of chromosome 5 for which copy number gain has been found to be the most frequent genetic event in the early stages of non-small cell lung cancer (NSCLC). This locus has been found by multiple genome wide association studies to be associated with lung cancer in both smokers and non-smokers. CLPTM1L has been identified as an overexpressed protein in human ovarian tumor cell lines that are resistant to cisplatin, which is the only insight thus far into the function of CLPTM1L. Here we find CLPTM1L expression to be increased in lung adenocarcinomas compared to matched normal lung tissues and in lung tumor cell lines by mechanisms not exclusive to copy number gain. Upon loss of CLPTM1L accumulation in lung tumor cells, cisplatin and camptothecin induced apoptosis were increased in direct proportion to the level of CLPTM1L knockdown. Bcl-xL accumulation was significantly decreased upon loss of CLPTM1L. Expression of exogenous Bcl-xL abolished sensitization to apoptotic killing with CLPTM1L knockdown. These results demonstrate that CLPTM1L, an overexpressed protein in lung tumor cells, protects from genotoxic stress induced apoptosis through regulation of Bcl-xL. Thus, this study implicates anti-apoptotic CLPTM1L function as a potential mechanism of susceptibility to lung tumorigenesis and resistance to chemotherapy.
    Full-text · Article · Jun 2012 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: This chapter discusses the synthesis, characterization, and catalysis of manganese (II) complexes encapsulated in NaX and NaY zeolites. The encapsulation of manganese(II)salen complexes into the pores of synthetic zeolites (NaX and NaY) is evaluated by different techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), N2 adsorption, Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV-Vis). The results are consistent with the location of manganese (Mn) complexes inside the micropores; even at low loadings, it is possible to confirm this evidence. Catalytic tests in olefin epoxidation prove the existence of catalytic activity and the stereoselectivity of the complex after encapsulation. These catalytic results indicate that Mn-salen-zeolites may be promising heterogeneous catalytic systems.
    No preview · Conference Paper · Dec 2001
Show more