Effect of vitamin A treatment on superoxide dismutase-deficient yeast strains

Departamento de Biofísica, IB/UFRGS, Porto Alegre, RS, Brazil.
Archives of Microbiology (Impact Factor: 1.67). 03/2010; 192(3):221-8. DOI: 10.1007/s00203-010-0551-2
Source: PubMed


Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Delta) and CuZnSOD/MnSOD (sod1Deltasod2Delta). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.

Download full-text


Available from: Jenifer Saffi
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study the antimutagenic and antioxidant effects of a powder of grain (Lisosan G) in yeast Saccharomyces cerevisiae were studied. Results showed that Lisosan G treatment decreased significantly the intracellular ROS concentration and mutagenesis induced by hydrogen peroxide in S. cerevisiae D7 strain. The effect of Lisosan G was then evaluated by using superoxide dismutase (SOD) proficient and deficient strains of S. cerevisiae. Lisosan G showed protective activity in sod1Δ and sod2Δ mutant strains, indicating an in vivo antioxidant effect. A high radical scavenging activity of Lisosan G was also demonstrated in vitro using the oxygen radical absorbance capacity (ORAC) assay. The obtained results showed a protective effect of Lisosan G in yeast cells, indicating that its antioxidant capacity contributes to its antimutagenic action.
    Full-text · Article · Dec 2012 · Food Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.
    Full-text · Article · May 2013 · BioMed Research International
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neoflavonoids comprise a group of natural compounds with varied chemical structures and promising pharmacological properties, including antioxidant capacity. This work describes an evaluation of the in vitro antioxidant capacity of a new coumarin derivative, i.e., 7-acetoxy-4-aryl-3,4-dihydrocoumarin, in terms of its ability to quench the 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), hydroxyl (OH•) and superoxide anion (O2•-) radicals, as well as its capacity to initiate electron transfer by reducing potential and inhibit lipid peroxidation by TBARS (thiobarbituric acid reactive substances) method. In addition, the antioxidant capacity of 7-acetoxy-4-aryl-3,4-dihydrocoumarin was evaluated against oxidative damage induced by hydrogen peroxide in erythrocyte suspensions and S. cerevisiae strains. In all methodologies investigated, high antioxidant capacities above 65% were demonstrated by 7-acetoxy-4-aryl-3,4-dihydrocoumarin against the DPPH•, ABTS•+, OH• and O2•- radicals. The ability of 7-acetoxy-4-aryl-3,4-dihydrocoumarin to inhibit oxidative damage induced by hydrogen peroxide in erythrocytes and S. cerevisiae strains demonstrates the importance of this compound in the protection against oxidative stress at the cellular level. Thus, the results obtained in this study suggest that 7-acetoxy-4-aryl-3,4-dihydrocoumarin can assist the development of new antioxidant products for possible use in the prevention or reduction of diseases related to oxidative stress.
    No preview · Article · Nov 2014 · Current Pharmaceutical Biotechnology