The reliability of neuroanatomy as a predictor of eloquence: A review

ArticleinNeurosurgical FOCUS 28(2):E3 · February 2010with21 Reads
DOI: 10.3171/2009.11.FOCUS09239 · Source: PubMed
The adjacency of intracranial pathology to canonical regions of eloquence has long been considered a significant source of potential morbidity in the neurosurgical care of patients. Yet, several reports exist of patients who undergo resection of gliomas or other intracranial pathology in eloquent regions without adverse effects. This raises the question of whether anatomical and intracranial location can or should be used as a means of estimating eloquence. In this review, the authors systematically evaluate the factors that are known to affect anatomical-functional relationships, including anatomical, functional, pathology-related, and modality-specific sources of variability. This review highlights the unpredictability of functional eloquence based on anatomical features alone and the fact that patients should not be considered ineligible for surgical intervention based on anatomical considerations alone. Rather, neurosurgeons need to take advantage of modern technology and mapping techniques to create individualized maps and management plans. An individualized approach allows one to expand the number of patients who are considered for and who potentially may benefit from surgical intervention. Perhaps most importantly, an individualized approach to mapping patients with brain tumors ensures that the risk of iatrogenic functional injury is minimized while maximizing the extent of resection.
    • "More recent models, however , indicate that language functions are executed by a complex and diffuse network involving dispersed cortical regions (Corina et al., 2010; Kano et al., 2012; Mottaghy et al., 2003 ). A recent review concluded that unpredictability of the location of functional eloquence renders anatomical imaging alone inadequate for deciding whether a patient is eligible for awake craniotomy or not, and recommended preoperative functional language mapping for selection of eligible tumor patients for surgical resection with intraoperative mapping (Pouratian and Bookheimer, 2010). A review of 9 reports comparing preoperative fMRI language mapping to intraoperative DES mapping in tumor patients concluded that the studies do not provide support for sufficient reliability of fMRI language mapping (Giussani et al., 2010). "
    [Show abstract] [Hide abstract] ABSTRACT: This article explores the feasibility of a novel repetitive navigated transcranial magnetic stimulation (rnTMS) system and compares language mapping results obtained by rnTMS in healthy volunteers and brain tumor patients. Fifteen right-handed healthy volunteers and 50 right-handed consecutive patients with left-sided gliomas were examined with a picture-naming task combined with time-locked rnTMS (5-10Hz and 80-120% resting motor threshold) applied over both hemispheres. Induced errors were classified into four psycholinguistic types and assigned to their respective cortical areas according to the coil position during stimulation. In healthy volunteers, language disturbances were almost exclusively induced in the left hemisphere. In patients errors were more frequent and induced at a comparative rate over both hemispheres. Predominantly dysarthric errors were induced in volunteers, whereas semantic errors were most frequent in the patient group. The right hemisphere's increased sensitivity to rnTMS suggests reorganization in language representation in brain tumor patients. rnTMS is a novel technology for exploring cortical language representation. This study proves the feasibility and safety of rnTMS in patients with brain tumor.
    Full-text · Article · Sep 2013
    • "Several proposals for ‘surgical eloquence’ have been published, [38]–[40] but these are based on surface anatomy with presumed functionality, and not on functional outcome. This may not be the most reliable source for surgical planning [41]. Furthermore, localization information is often limited to lobe involvement or categorization by eloquence in reports of surgical outcome [5], [6], [42]. "
    [Show abstract] [Hide abstract] ABSTRACT: Intraoperative brain stimulation mapping reduces permanent postoperative deficits and extends tumor removal in resective surgery for glioma patients. Successful functional mapping is assumed to depend on the surgical team's expertise. In this study, glioma resection results are quantified and compared using a novel approach, so-called resection probability maps (RPM), exemplified by a surgical team comparison, here with long and short experience in mapping. Adult patients with glioma were included by two centers with two and fifteen years of mapping experience. Resective surgery was targeted at non-enhanced MRI extension and was limited by functional boundaries. Neurological outcome was compared. To compare resection results, we applied RPMs to quantify and compare the resection probability throughout the brain at 1 mm resolution. Considerations for spatial dependence and multiple comparisons were taken into account. The senior surgical team contributed 56, and the junior team 52 patients. The patient cohorts were comparable in age, preoperative tumor volume, lateralization, and lobe localization. Neurological outcome was similar between teams. The resection probability on the RPMs was very similar, with none (0%) of 703,967 voxels in left-sided tumors being differentially resected, and 124 (0.02%) of 644,153 voxels in right-sided tumors. RPMs provide a quantitative volumetric method to compare resection results, which we present as standard for quality assessment of resective glioma surgery because brain location bias is avoided. Stimulation mapping is a robust surgical technique, because the neurological outcome and functional-based resection results using stimulation mapping are independent of surgical experience, supporting wider implementation.
    Full-text · Article · Sep 2013
    • "MRI, fMRI, DTI, and MEG are used for preoperative mapping [76, 77, 111]. It has been suggested that preoperative mapping should include at least fMRI [100] since other methods like MEG and PET [124] are usually found in specialized centres only. Anatomical MRI is crucial in localizing tumors and in general lesions, but does not reveal the epileptic foci. "
    [Show abstract] [Hide abstract] ABSTRACT: This Thesis demonstrates the way to combine navigated transcranial magnetic stimulation (nTMS) with electrophysiological techniques, such as electroencephalography (EEG) and magnetoencephalo graphy (MEG). This technical and neurophysiological possibility allows the assessment of cortical excitability and functional connectivity with the advantage of high spatiotemporal resolution. Investigation of these cortical network properties can lead in deeper understanding of sensorimotor and speech networks and bridge the gap between basic research and clinical applications by means of TMS. First, we examined whether nTMS–EEG can be used as a marker of cortical excitability changes by investigating the reproducibility of EEG after TMS. We showed that reproducibility is a feature of TMS-evoked EEG responses if the parameters of the stimulation and coil orientation are kept the same. Utilization of navigation is crucial for such test–retest paradigms. The second part of the thesis elaborated the effect of neuronal state prior to TMS on cortico–cortical excitability. We demonstrated modulation of excitability not only of the contra- but also of the ipsilateral hemisphere during preparation and execution of unilateral movements. We also tested the methodology to measure the time onset of cortical activation by grading the levels of its modulation with TMS–EEG. Next, we utilized MEG to detect sensorimotor cortical sources. nTMS was used to target these sources and modulate their activity during a motor task after a sensory stimulation. We demonstrated that stimulation of the secondary somatosensory cortex can influence the primary one and amplify somatosensory processing. By this study, we set the methodological standards on how to use nTMS and MEG in mapping the sensorimotor cortex. Therefore, we applied our experience in presurgical mapping of epileptic patients before cortical resection. By combining the nTMS and MEG advantages, we created a noninvasive methodology to map the sensorimotor cortex. The results were as accurate as electrical cortical stimulation in most patients. Thus, it may be possible to replace costly invasive standard procedures, which pose a high risk for the patient, when the epileptic focus is near sensorimotor cortex and accessible to MEG. This motivated us to create another nTMS paradigm for mapping speech-related areas. We combined an object naming paradigm and repetitive TMS to find cortical sites sensitive to interference during the task. We recorded video of the experiment to evaluate the effect of TMS on the subjects’ performance. The results show that this method may map speech-related areas successfully. All in all, we show that recent advances in TMS set new standards in basic research and clinical applications, such as preoperative work- up and test–retest pharmacological studies. Crossmodal nTMS applications open new avenues in studying cortical network parameters.
    Full-text · Thesis · Dec 2012 · PLoS ONE
Show more