Evidence for involvement of glycoprotein-CD45 phosphatase in reversing glycoprotein-CD3-induced microtubule-associated protein-2 kinase activity in Jurkat T-cells

Department of Microbiology and Immunology, UCLA School of Medicine 90024-1680.
Biochemical Journal (Impact Factor: 4.4). 07/1991; 276(2). DOI: 10.1042/bj2760481
Source: OAI


Ligation of CD3/TCR on T-cells induces transient activation of lymphoid MAP-2 kinase (MAP-2K), a 43 kDa serine kinase which itself is a substrate of an unidentified tyrosine kinase (pp43). The reversibility of the MAP-2K response agrees with removal of tyrosine phosphates from pp43. Since both activity as well as tyrosine phosphorylation of MAP-2K could be prolonged by Na3VO4, a phosphotyrosine phosphatase inhibitor, we studied the effect of the common CD45 isoform, which is a member of the CD45 phosphatase family, on MAP-2K activity in vivo and in vitro. We demonstrate the ability of purified CD45 phosphatase to remove tyrosine phosphates from partially purified lymphoid MAP-2K. Utilizing the approach of heterologous receptor aggregation, we also showed that CD45 could inhibit the induction of MAP-2K activity in intact Jurkat cells during CD3 or CD3 + CD4 stimulation. We therefore suggest that this phosphatase may control the activity of lymphoid MAP-2K in vivo.

Download full-text


Available from: Gary L Schieven, Nov 12, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stimulation of the T cell receptor-CD3 complex activates multiple signal transduction pathways, including serine/threonine and tyrosine protein kinases. Stimulation of the human T cell line Jurkat via the T cell receptor-CD3 complex with anti-CD3 monoclonal antibody or incubation with the tumor promoter phorbol 12-myristate 13-acetate caused increases in S6 kinase and microtubule-associated protein 2 (MAP) kinase activities. An S6 kinase activity that was able to phosphorylate exogenous 40S ribosomal S6 protein was recovered in immunoprecipitates obtained using a 90-kDa ribosomal S6 kinase-specific antiserum and thus represents activation of a member of the 90-kDa ribosomal S6 kinase family. Stimulation of the S6 kinase activity correlated with an increase in a kinase activity able to phosphorylate exogenous 90-kDa ribosomal S6 kinase (rsk) attributed to a MAP kinase activity. These increases in S6 and MAP kinase activities further correlated with the appearance of a 42-kDa phosphoprotein detected by anti-phosphotyrosine immunoblotting. However, while the tyrosine phosphorylation of the 42-kDa protein and the MAP kinase activity are dependent on protein kinase C activity, residual S6 kinase activity can be detected following protein kinase C depletion and subsequent anti-CD3 stimulation. Thus, T cell activation through the T cell receptor-CD3 complex results in activation of a member of the 90-kDa S6 kinase family which correlates with, but can be independent of, MAP kinase activation.
    No preview · Article · Feb 1992 · European Journal of Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The binding of agonistic monoclonal antibodies (mAb) to the CD3 antigen in T cells induces a rapid increase in tyrosine phosphorylation, inositive phosphate (IP) production, a rise in intracellular calcium and protein kinase C (PKC) activation. These intracellular signals have been implicated in the control of interleukin-2 and interleukin-2R receptor gene expression, thereby regulating T cell proliferation. Previous studies have shown that co-ligation of the CD45 and CD3 antigens inhibits CD3-induced tyrosine phosphorylation, IP production, calcium signals and T cell proliferation. It has therefore been suggested that the CD45 antigen uncouples the T cell receptor (TcR) from mitogenic signal pathways. In this study co-ligation of the CD3 and CD45 antigens with precisely constructed bispecific mAb did not inhibit CD3-induced T cell proliferation, IP production, calcium signals, diacylglycerol production or PKC activation. Furthermore, co-ligation of CD3 and CD45 antigens already cross-linked with IgM mAb did not lead to inhibition of CD3-induced calcium signals. Inhibitions of CD3-induced intracellular signals were observed following co-ligation of IgG CD45 and CD3 mAb with anti-IgG (F(ab')2 fragments. However, comparable inhibitions were also noted following co-ligation of CD3 with other abundant cell-surface antigens such as CD5 and LFA-1, and inhibitions were only observed when the CD3 mAb used required cross-linking to induce signals. These results suggested that the inhibitory effects of CD45 IgG mAb were not specific and were caused by the prevention of CD3-CD3 cross-linking following CD3 antigen co-ligation with other cell surface molecules. These findings are inconsistent with a specific inhibitory role for the CD45 phosphotyrosine phosphatase in uncoupling the TcR from mitogenic signal pathways.
    No preview · Article · Apr 1992 · European Journal of Immunology

  • No preview · Article · Mar 1993 · Molecular Immunology
Show more