Establishing Normative Data on Scapulothoracic Musculature Using Handheld Dynamometry

Armstrong Atlantic State University, USA.
Journal of sport rehabilitation (Impact Factor: 1.28). 11/2009; 18(4):502-20.
Source: PubMed
ABSTRACT
Scapular strength deficits have been linked to shoulder dysfunction.
To establish normative data on the scapulothoracic musculature in normal subjects using a handheld dynamometer.
Descriptive normative data study.
Field research.
172 subjects with varying levels of overhead activity.
A handheld dynamometer was used to test the upper, middle, and lower trapezius; rhomboids; and serratus anterior.
A 2-factor ANOVA was performed for each of the muscles by activity level and unilateral ratio by activity-level analyses. Post hoc analysis included multiple pairwise comparisons, using the Dunn-Bonferroni correction method.
Activity level did not significantly affect the unilateral ratios: Elevation:depression was 2.5:1, upward:downward rotation was 1.5:1, and protraction:retraction was 1.25:1. A rank order from strongest to weakest was established through significant comparisons.
The unilateral ratios along with the rank order should be considered when discussing scapular rehabilitation protocols.

Full-text

Available from: Bryan L Riemann
502
Journal of Sport Rehabilitation, 2009, 18, 502-520
© 2009 Human Kinetics, Inc.
Establishing Normative Data
on Scapulothoracic Musculature
Using Handheld Dynamometry
Nichole Turner, Kristen Ferguson, Britney W. Mobley,
Bryan Riemann, and George Davies
Context: Scapular strength decits have been linked to shoulder dysfunction. Objec-
tive: To establish normative data on the scapulothoracic musculature in normal sub-
jects using a handheld dynamometer. Design: Descriptive normative data study.
Setting: Field research. Subjects: 172 subjects with varying levels of overhead activ-
ity. Methods: A handheld dynamometer was used to test the upper, middle, and lower
trapezius; rhomboids; and serratus anterior. Main Outcome Measures: A 2-factor
ANOVA was performed for each of the muscles by activity level and unilateral ratio
by activity-level analyses. Post hoc analysis included multiple pairwise comparisons,
using the Dunn-Bonferroni correction method. Results: Activity level did not signi-
cantly affect the unilateral ratios: Elevation:depression was 2.5:1, upward:downward
rotation was 1.5:1, and protraction:retraction was 1.25:1. A rank order from strongest
to weakest was established through signicant comparisons. Conclusion: The unilat-
eral ratios along with the rank order should be considered when discussing scapular
rehabilitation protocols.
Keywords: handheld dynamometer, scapulothoracic strength, shoulder
impingement
Weakness, abnormal positioning, and abnormal timing of the scapular mus-
cles are all contributing factors to scapular dyskinesia. Impairments in scapular
motion can lead to problems such as abnormal stresses on the anterior capsular
structures of the shoulder, increased risk of rotator-cuff compression, and
decreased muscle performance.
1,2
Also, dyskinesis inuences the position and
decreases the size of the subacromial space, leading to subacromial impinge-
ments.
3,4
Changes in scapular motion, such as decreased protraction or imbal-
ances between the upper and lower trapezius, have been reported in patients with
impingement.
3–8
Inadequate scapular stabilization has been shown to contribute to
altered biomechanics of the shoulder complex and to increase the risk of musculo-
skeletal problems such as instability and impingement.
2–5,7–9
Turner, Ferguson, and Mobley are practicing physical therapists who graduated from Armstrong
Atlantic State University. Riemann is with the Dept of Health Sciences, and Davies, the Dept of
Physical Therapy, at the university.
Page 1
Normative Data on Scapulothoracic Musculature 503
Research has demonstrated that alterations in scapular kinematics are con-
nected to decreased serratus anterior activity, increased upper trapezius muscle
activity, and imbalances between the upper and lower trapezius.
2,7,10,11
Research
has shown that scapular upward rotation, posterior tilt, and external rotation were
decreased in patients with impingement syndrome when compared with healthy
subjects.
7
Ludewig and Cook
7
also demonstrated that subjects with symptoms of
impingement had signicantly more upper trapezius muscle activity and less ser-
ratus anterior activity than a control group. Cools et al
5
found that overhead ath-
letes with impingement demonstrated decreased protraction. These studies
underline the importance of scapular kinematics and strengthening exercises in
shoulder rehabilitation protocols.
One way to objectively measure strength in the clinical setting is through the
use of a handheld dynamometer, which is more accurate and less subjective than
manual muscle testing. The intrarater and interrater reliability of handheld dyna-
mometry have been supported in previous studies.
12–23
The strength of the rater,
experience, and tester stability all can alter the reliability of the measurement.
21,23
However, if these variables are controlled, the handheld dynamometer can be a
valuable assessment tool.
Adequate assessment of the scapulothoracic musculature is essential to
designing better rehabilitation protocols. Research has demonstrated that some
cases of impingement problems have been adequately resolved with rehabilitation
protocols involving scapular muscle reeducation and strengthening exercises.
1,24,25
By restoring the normal balance of force couples, physical rehabilitation can
improve the position and motion of the scapula to decrease impingements and also
increase the strength of rotator-cuff muscles.
1
Therefore, outcome assessments in
rehabilitation protocols should address these kinematic and muscle-activity altera-
tions to restore normal scapulothoracic and shoulder-complex movements.
Michener et al
22
examined the construct validity, reliability, and error of
handheld dynamometry testing of scapular muscles in subjects with shoulder pain
and functional loss. They stated, At present, the error value of a single-time hand-
held dynamometry scapular muscle measurement is unclear without the establish-
ment of normative values of scapular muscle measurements.
22(p1135)
To our
knowledge, no studies have been performed to develop normative strength data on
the scapular muscles using a handheld dynamometer. Therefore, the purpose of
this study was to establish normative data for strength of the scapulothoracic mus-
cles in healthy individuals, as well as examine the effects of overhead-activity
level on these measurements. We hypothesized that those who participate in activ-
ities that require increased scapular stabilization, such as overhead athletes, would
have higher strength values than those who do not.
Subjects
One hundred ninety subjects were recruited from local high school, college, and
adult sports teams. A cross-section of sports and activities was sampled to examine
the differences in subjects with bilateral, unilateral, or no overhead activity. A
sample of convenience was used based on the availability, accessibility, and cha-
racteristics of the surrounding community. Because this was a unique study, we did
not have reasonable estimates of effect sizes to perform an actual power analysis
Page 2
504 Turner et al
for the group by muscle comparisons. Thus, based on the central-limit theorem, a
goal of 50 subjects per group was set to ensure a reasonable chance of obtaining
normally distributed data for the statistical analyses. The subjects each t into only
1 category, with little crossover training between unilateral and bilateral activities.
For example, there were no baseball, tennis, or volleyball subjects who regularly
participated in swimming. Eighteen subjects were excluded based on the following
criteria: history of shoulder surgery or macrotrauma; current shoulder, neck, or
thoracic pain; scoliosis; or observable winging of the scapulae. Institutional-
review-board approval was obtained, and the remaining 172 subjects (and parents
when applicable) gave informed consent or assent. All testing was carried out in
keeping with the spirit of the Helsinki declaration. After testing, an exercise pro-
gram for the glenohumeral and the scapulothoracic musculature was provided to
the subjects as an incentive to participate in the study.
25,26
Methods
Subjects were asked to ll out a questionnaire regarding their activity level, height,
weight, history of previous injury to the upper extremities, and basic demographic
information. Body-mass index (BMI) was then calculated based on height and
mass. Total arm length and upper-arm circumference were recorded for later com-
parisons with strength data. Honesty in reporting height and weight was assumed
in some cases because of equipment limitations; most of the testing took place at
team practices or meetings. Total arm length was dened as the distance from the
lateral edge of the acromion to the end of the middle nger. We also measured
shoulder-girdle length, dened as the distance from the mastoid process to the
lateral edge of the acromion. The halfway point of this measurement was marked
for dynamometer placement over the muscle bulk of the upper trapezius. In addi-
tion, upper-arm length was measured, dened as the length from the lateral acro-
mion to the lateral epicondyle, and the halfway point was marked for dynamometer
placement during rhomboid testing. Arm circumference was also measured at this
halfway point of the upper arm.
The manual-muscle-testing positions described by Hislop and Montgomery
28
were adapted for use with the Baseline hydraulic push–pull handheld dynamom-
eter with analog gauge (see Figures 1 and 2). Muscles rarely work in an isolated
manner, so these muscle tests can be considered “biased” toward each muscle. For
example, several studies have shown increased middle-trapezius electromyo-
graphic activity during the position described in Figure 3 for the lower trape-
zius.
11,22,27
However, isolating the middle trapezius’ action of scapular retraction
is commonly done in clinical practice, as shown in Figure 4.
28
Michener et al
22
established construct validity for the lower- and upper-trapezius muscle tests
using the positions described in Figures 3 and 5, respectively. The testing proce-
dure for the serratus anterior targets both functions of the muscle: upward rotation
and protraction (see Figure 6).
11,27,29
The testing procedure for the rhomboids is
illustrated in Figure 7. Smith et al
30
demonstrated that the rhomboid manual
muscle test described by Hislop et al was not signicantly different than the rhom-
boid manual muscle test described by Kendall et al when considering the percent
maximum voluntary contraction of the rhomboids.
Page 3
505
Figure 1 Rectangular end piece used
for testing the middle and lower trapezius.
Figure 2 — Curved end piece used for
testing the upper trapezius, serratus ante-
rior, and rhomboids.
Figure 3 — Lower-trapezius bias. The subject was prone with the arm in 150° of scaption
with the thumb up. The dynamometer was placed on the posterolateral corner of the acro-
mion, and the rectangular end piece was used. The clinician stabilized the contralateral hip
while matching the force of the subject.
Page 4
506
Figure 4 Middle-trapezius bias. The subject was prone with the arm in 90° of abduction
and the elbow in 90° of exion. The dynamometer was placed on the posterolateral corner
of the acromion, and the rectangular end piece was used. The subject was instructed to
“squeeze your shoulder blades together” to retract his or her scapula. The clinician stabi-
lized the contralateral scapula while matching the force exerted by the subject.
Figure 5 Upper-trapezius bias. The sub-
ject was seated with his or her arms at the
sides. The dynamometer was placed halfway
between the mastoid and lateral acromion
over the muscle bulk, and the curved end piece
was used. The examiner was allowed to use
both hands, so no stabilization was necessary.
Figure 6 Serratus anterior bias. The sub-
ject was seated with the arm in 130° of exion.
The dynamometer was placed on the humerus
distally to the deltoid attachment, and the
curved end piece was used. The clinician stabi-
lized the inferior angle of the scapula being
tested while matching the force of the subject.
Page 5
Normative Data on Scapulothoracic Musculature 507
For each test, the subject was asked to perform the motion through his or her
full range of motion, back off into midrange, and hold the position. A “make”
muscle contraction was used rather than a “break” muscle contraction. A make
test was used to avoid overpowering the subjects in an effort to measure their
force-producing capabilities. Make tests are used almost exclusively with hand-
held dynamometry.
13–21,23
Subjects were asked to build their force gradually to a
maximum voluntary effort over a 2-second period. They maintained a maximum
voluntary effort for a 5-second period. The examiner kept the dynamometer in
place by matching the force exerted by the subject, and the peak force was
recorded. If the subject “broke” against resistance, the data were not recorded, and
the muscle test was repeated. Strength measurements were collected for each sub-
ject’s dominant upper extremity. One trial of each muscle test was used, which has
been established in the literature as adequate for measuring muscle strength in
healthy subjects.
20
To avoid any possible fatigue factor, all the testing occurred
before practices, competitions, or heavy exercise.
The order for testing the muscles was semirandomized to facilitate the
speed of testing. Because the end piece of the dynamometer had to be changed,
muscle tests requiring the curved end piece were tested together. These muscles
included the upper trapezius, serratus anterior, and rhomboids. The middle- and
lower-trapezius muscle tests required the rectangular end piece and were there-
fore tested last. For the next subject, the rectangular end-piece conguration was
used rst. Within these limitations, the order of testing was randomized. The
handheld dynamometer with both end pieces used in testing is pictured in
Figures 1 and 2.
Figure 7 Rhomboids bias. The subject was prone with the hand on the small of the
back. The dynamometer was placed on the humerus halfway between the acromion and
lateral epicondyle, and the curved end piece was used. The clinician stabilized the contra-
lateral scapula.
Page 6
508 Turner et al
Reliability Study
Before actual data collection, the 2 testers involved in the study performed exten-
sive practice with subjects not included in the study analysis to develop consistent
techniques, adopt stable positions for resisting subjects’ force, and improve reli-
ability. After sufcient practice, a pilot study was performed to determine the intra-
rater and interrater reliability of the 2 examiners. Sixteen subjects were recruited,
all of whom met inclusion criteria for the study. Both examiners were blinded to the
measurements, and the procedure used was identical to that of the larger study.
None of the subjects were included in the larger investigation. Time between testers
(intertester) was 15 minutes, and intratester-reliability interval was 72 hours. Again,
the subjects were similar in anthropometric and demographic characteristics to the
subjects in the larger study. Rationale for sample size used was based on a reliabil-
ity power analysis.
31
Data were analyzed using Statistical Package for the Social
Sciences (version 15.0) to calculate interclass coefcients (ICCs) for intrarater and
interrater reliability. The (3, 1) formula was used to calculate these ICCs. After ICC
calculation, the standard errors of measurement were calculated. See Table 1.
Data Analysis
Subjects were classied into 1 of the following 3 groups: no overhead activity,
unilateral overhead activity, or bilateral overhead activity. No overhead activity
was dened as not participating in any athletic activity that required the arm to be
elevated above 90°, including runners, soccer players, and nonathletic participants.
Unilateral overhead activity was dened as participating in any athletic activity
that required predominately 1 arm to be elevated above 90°, such as tennis and any
throwing-sport athletes. Bilateral overhead activity was dened as participation in
Table 1 Reliability Analysis for the Pilot Study
ICC SEM (n)
Muscle E1 E2 IR E1 E2 IR
Upper trapezius (left) .894 .710 .719 22.69 26.93 34.44
Upper trapezius (right) .824 .650 .394 28.52 26.66 49.15
Middle trapezius (left) .664 .525 .724 16.54 19.70 13.68
Middle trapezius (right) .554 .404 .690 16.73 23.19 13.64
Lower trapezius (left) .772 .693 .811 9.86 13.92 11.13
Lower trapezius (right) .759 .700 .648 11.10 11.47 13.04
Rhomboids (left) .817 .836 .853 16.44 16.58 16.57
Rhomboids (right) .816 .796 .718 13.54 15.96 18.46
Serratus anterior (left) .737 .692 .770 19.73 21.68 17.06
Serratus anterior (right) .866 .826 .689 15.46 15.90 22.40
E1, examiner 1; E2, examiner 2; IR, interrater.
Page 7
Normative Data on Scapulothoracic Musculature 509
athletic activity that required both arms to be elevated above 90°, such as swim-
mers and triathletes. Based on the operational denitions used, to be considered for
either the unilateral or bilateral athlete categories, one had to have actively partici-
pated in an organized sport (ie, high school, college, master’s level) for a minimum
of 1 year. Descriptive statistics for the demographics for each group are provided
in Table 2.
First, the data were correlated with the anthropometric measurements to
attempt to normalize scapulothoracic strength to each individual. The dominant
arm was used for all data analysis. A 2-factor repeated-measures ANOVA was
used to analyze the effects of activity level on scapulothoracic strength measure-
ments. The 5 muscles were entered as a within-subject factor using 5 levels. Activ-
ity level was used as a between-subjects factor.
For each ANOVA, the average force production of each muscle across each
activity level was analyzed to determine a rank order for the strength of the 5
muscle groups tested. Then the unilateral strength ratios were determined. The 3
ratios studied were elevation versus depression (upper vs lower trapezius), pro-
traction versus retraction (serratus anterior vs middle trapezius), and upward
versus downward rotation (serratus anterior vs rhomboids). For simplicity, the
serratus anterior was used to represent upward rotation, instead of the force-
couple concept using upper trapezius, lower trapezius, and serratus anterior. The
middle trapezius was selected because it has the unilateral function of retraction,
as opposed to the rhomboids, which have the dual function of retraction and
downward rotation. As stated before, muscle weaknesses and imbalances can lead
to impingement, so using these unilateral ratios may help establish normal bal-
ance of the scapulothoracic muscles.
3–8
A separate 2-factor ANOVA of ratio by
activity level was used to examine the effects of activity level on the strength
ratios. Each ratio served as a within-subject factor with 3 levels, and activity level
constituted a between-subjects factor with 3 levels.
When signicant interactions on main effect were revealed, main interactions,
only effects post hoc comparisons were conducted using the Dunn–Bonferroni
procedure. Specically, for signicant interactions, only within-group–between-
muscles and within-muscle–between-groups comparisons were considered. Statis-
tical signicance was considered P < .05.
Table 2 Subjects Classied by Activity Level
Overhead Activity
None Unilateral Bilateral
Number 52 54 66
Age range, y 13–60 11–37 12–60
Mean age 24.9 ± 9.4 17.9 ± 4.8 28.6 ± 13.2
Men 14 44 28
Women 38 10 38
Page 8
510 Turner et al
Results
Correlations With Anthropometric Data
Correlations are shown in Table 3. Analysis demonstrated very weak relationships
between muscle force and these anthropometric relationships.
Muscle by Overhead Activity-Level Analysis
The 2-factor ANOVA demonstrated a signicant interaction between muscle
strength and activity level (F
5.2,438
= 4.364, P = .001). A signicant main effect
was observed for muscle (F
2.6,438
= 713.971, P < .001), as well as activity level
(F
2,169
= 10.889, P < .001). The means, SDs, and 95% condence intervals are
presented in Table 4.
Generally, the overhead athletes (both unilateral and bilateral) had signi-
cantly higher muscle strength than the group with no overhead activity (Figure 8).
This pattern was true for every muscle except the lower trapezius, which was the
weakest across all 3 groups. There were no signicant differences between the
unilateral and bilateral overhead-activity groups. There were no statistically sig-
nicant differences found among any of the groups with respect to the lower tra-
pezius (Table 4).
The upper trapezius was signicantly stronger than any other muscle
(Figure 9). Both the middle trapezius and serratus anterior were signicantly stron-
ger than the rhomboids and the lower trapezius. There were no signicant differ-
ences between the middle trapezius and the serratus anterior. In addition, there
were no signicant differences between the lower trapezius and the rhomboids.
The upper trapezius was signicantly stronger than any other muscle (Figure
10). The serratus anterior was signicantly stronger than the middle and lower
trapezius, as well as the rhomboids. The middle trapezius was signicantly stron-
ger than the lower trapezius and rhomboids. There was no signicant difference
between the lower trapezius and the rhomboids.
The upper trapezius was signicantly stronger than any other muscle (Figure 11).
The middle trapezius was signicantly stronger than the lower trapezius and the
Table 3 Correlations (r Values) Between Anthropometric
Measurements and Scapulothoracic Strength
Muscle
Body-
mass
index Height Mass
Total arm
length
Upper-arm
circumference
Upper trapezius .213* .288** .349** .372** .443**
Middle trapezius .250* .260* .367** .375** .451**
Lower trapezius .271** .154* .334** .280** .436**
Rhomboids .070 .176* .230* .454** .295**
Serratus anterior .184* .209* .293** .398** .425**
*P < .05. **P < .001.
Page 9
Normative Data on Scapulothoracic Musculature 511
Table 4 Mean Force Production for Each Muscle Across Overhead-
Activity-Level Groups
Overhead activity Mean (n) SD 90% CI n
Upper trapezius None 274.9 79.1 256.5–293.3 52
Unilateral 318.3 77.8 300.6–336.1 54
Bilateral 313.6 71.0 299.0–328.2 66
Total 303.4 77.5 293.6313.2 172
Middle trapezius None 136.3 41.2 126.7–145.9 52
Unilateral 159.5 50.9 147.9–171.0 54
Bilateral 165.3 38.5 157.4–173.2 66
Total 154.7 45.0 149.0163.4 172
Lower trapezius None 115.1 42.8 105.2–125.1 52
Unilateral 132.7 35.8 124.6–140.9 54
Bilateral 122.6 33.9 115.6–129.5 66
Total 123.5 37.8 118.7128.3 172
Rhomboids None 114.2 42.4 104.3–124.0 52
Unilateral 137.4 45.1 127.2–147.7 54
Bilateral 146.4 32.0 139.6–139.1 66
Total 133.8 41.7 128.6139.1 172
Serratus anterior None 150.9 56.0 137.9–164.0 52
Unilateral 196.9 56.2 184.1–209.7 54
Bilateral 208.1 51.3 197.6–218.7 66
Total 187.3 59.3 179.8194.8 172
rhomboids. The serratus anterior was signicantly stronger than the middle and
lower trapezius, as well as the rhomboids. The rhomboids were signicantly stron-
ger than the lower trapezius, which is a unique nding to the bilateral overhead-
activity group.
Therefore, given the data, a rank order cannot be established for every activity-
level group. However, Table 5 demonstrates a general template for rank ordering
the strength of the scapulothoracic muscles based on overhead-activity level.
After a 2-way ANOVA to compare muscle-strength ratios across activity-
level groups, no signicant interaction was observed (F
2.6,217
= 1.929, P = .135). A
signicant main effect for muscle ratio was noted (F
1.3,217
= 293.617, P < .001),
but the main effect for activity level was not signicant (F
2,169
= 0.919, P = .401).
Therefore, it is not necessary to discuss each muscle ratio separately by overhead-
activity level. Post hoc analysis revealed that the elevation:depression ratio was
statistically signicantly higher than both of the other ratios. The upward:downward
rotation ratio was signicantly higher than the protraction:retraction ratio (Table 6
and Figure 12).
Page 10
512
Figure 9 Strength of the scapulothoracic muscles in the no-overhead-activity group.
*Signicantly greater than all other muscles for this activity group. †Signicantly greater
than the lower trapezius and rhomboid. Error bars represent the SD.
Figure 8 — Strength of the scapulothoracic muscles between activity-level groups. *Sig-
nicantly greater than the group with no overhead activity. Error bars represent the SD.
Page 11
513
Figure 10 Strength of the scapulothoracic muscles in the unilateral overhead-activity
group. *Signicantly greater than all other muscles for this activity group. †Signicantly
greater than the lower trapezius and rhomboid. ‡Signicantly greater than the middle tra-
pezius, lower trapezius, and rhomboid. Error bars represent the SD.
Figure 11 Strength of the scapulothoracic muscles in the bilateral overhead-activity
group. *Signicantly greater than all other muscles for this activity group. †Signicantly
greater than the lower trapezius and rhomboid. ‡Signicantly greater than the middle tra-
pezius, lower trapezius, and rhomboid. §Signicantly greater than the lower trapezius. Er-
ror bars represent the SD.
Page 12
514
Table 5 Rank Order for Scapulothoracic Muscle Strength Based on
Post Hoc Analysis of Overhead-Activity Level
Overhead Activity
None Unilateral Bilateral
Upper trapezius
a
Upper trapezius
a
Upper trapezius
a
Serratus anterior or middle
trapezius
a
Serratus anterior
a
Serratus anterior
a
Middle trapezius
a
Middle trapezius
a
Rhomboids or lower
trapezius
Rhomboids or lower
trapezius
Rhomboids
a
Lower trapezius
a
Indicates the strength of this muscle was signicantly greater than those below.
Table 6 Ratio Comparison as Grouped by Overhead-Activity Level
Overhead
activity
Mean
(n) SD 95% CI n
Elevation:depression
(upper trapezius to lower
trapezius)
None 2.65 1.12 2.34–2.97 52
Unilateral 2.46 0.56 2.30–2.61 54
Bilateral 2.74 1.00 2.49–2.99 66
Total 2.62 0.93 2.482.76 172
Upward:downward
rotation (serratus anterior
to middle trapezius)
None 1.13 0.33 1.03–1.22 52
Unilateral 1.27 0.25 1.20–1.34 54
Bilateral 1.29 0.32 1.21–1.36 66
Total 1.23 0.31 1.191.28 172
Protraction:retraction
(serratus anterior to
rhomboids)
None 1.42 0.57 1.26–1.58 52
Unilateral 1.48 0.36 1.39–1.58 54
Bilateral 1.44 0.27 1.37–1.50 66
Total 1.45 0.40 1.391.51 172
Page 13
Normative Data on Scapulothoracic Musculature 515
Discussion
This study was the rst to examine the relationships between scapulothoracic
strength using a handheld dynamometer and anthropometric measurements such
as BMI or arm length. These measurements are clinically relevant in a myriad of
ways. For instance, these data can be used to establish normative strength values
for use during injury-prevention screenings, initial evaluations, and serial reas-
sessments and when setting discharge criteria, as well as being used as guidelines
for designing strength and conditioning programs to ensure that the glenohumeral
joint has a stable scapulothoracic base. Future research in this area, along with our
current study, could lead to an extensive database of strength values for clinicians.
When the handheld-dynamometer measurements were compared with mea-
surements such as height, weight, BMI, total arm length, and arm circumference,
weak relationships were found. Examining BMI, in addition to height and mass,
was one of the original intents of the current study because currently there is no
other research comparing handheld-dynamometer strength data and anthropomet-
ric data for any body part. However, because there were very weak relationships
(Table 3) we did not think it was appropriate in the nal analysis of the data. For
example, the highest correlation was between BMI and the lower trapezius (r =
.271), which only leads to 7.3% shared variance. Although normalizing to body
weight or BMI would have been useful for general application, the data did not
support this relationship. A few possible explanations for the weak relationships
Figure 12 — Unilateral muscle-strength ratios by overhead-activity level. *Signicantly
greater than the protraction:retraction ratio and the upward:downward rotation ratio. †Sig-
nicantly greater than the protraction:retraction ratio. Error bars represent the SD.
Page 14
516 Turner et al
are that the upper extremity is not weight bearing and therefore may not be
affected by body weight. In addition, the scapular muscles work as synergists and
stabilizers, as opposed to prime movers, so this may affect the relationships with
measurements such as body mass or BMI. Subjects with varying levels of over-
head experience and a wide range of ages were studied, so perhaps a more homo-
geneous sample would have yielded stronger correlations.
The strongest anthropometric correlations were seen with upper-arm circum-
ference measurements. Arm circumference may represent muscle mass of the
upper arm, so a higher measure would indicate increased cross-sectional area and
therefore increased force production. The scapular muscles provide the proximal
stability for the arm, so this increase in strength of the upper arm may translate to
increased strength in the scapular muscles. Increased arm circumference could
also indicate obesity, but in this study the mean BMI was 22.69 ± 3.98. The sub-
jects were also generally physically active, so we feel that arm circumference
better represents muscle mass. Further research is warranted in this area to explore
all relationships between anthropometric measurements and scapulothoracic
muscle strength.
When comparing muscle strength and activity level, a common pattern was
found. The overhead-activity-level groups (unilateral and bilateral) had signi-
cantly greater scapulothoracic muscle strength than the group with no overhead
activity. This observation can most likely be explained by a training effect.
Although direct training of the scapular stabilizers is not commonly seen in train-
ing programs, these muscles are a part of the kinetic chain and were therefore
active during overhead activity for stabilization.
There were signicant differences between each muscle’s strength in the
bilateral overhead-activity level, which led to establishing a rank order for this
group. The rank order is as follows: upper trapezius, serratus anterior, middle
trapezius, rhomboids, and lower trapezius. For the remainder of the activity-level
groups, an exact rank order could not be determined given the lack of signicant
differences between muscles; however, several trends were observed. These trends
were similar to the order established by the bilateral overhead-activity group.
Generally, the upper trapezius was the strongest, followed by the serratus anterior
and middle trapezius, followed by the rhomboids and lower trapezius.
As previously stated, scapulothoracic muscle weaknesses lead to imbalances
that can result in abnormal stabilization and control of the scapula.
1
Identifying
weakness that could potentially lead to shoulder dysfunction could potentially
lead to a decreased rate of subacromial impingement. In one study, the rate of
shoulder impingement was 55.1% of 878 patients with shoulder dysfunction.
32
A
rank order can be used to identify weak muscles to modify training and condition-
ing programs with the goal of restoring normal muscle balance. This comparison
would be analogous to considering quadriceps-to-hamstring ratios.
However, with respect to the unilateral ratios, no differences were seen across
activity level. The 172 normal subjects included in this study demonstrated upper-
trapezius strength approximately 2.5 times that of the lower trapezius. The ratio
between the upward rotators (represented by the serratus anterior) and the down-
ward rotators (rhomboids) was approximately 1.5:1. The ratio between scapular
protraction (serratus anterior) and scapular retraction was approximately 1.25:1.
We recognize that the scapulothoracic muscles work as synergists to produce scap-
Page 15
Normative Data on Scapulothoracic Musculature 517
ular motion. Therefore using 1 muscle to represent each motion may be a limita-
tion and an oversimplication. Nonetheless, we felt it was more appropriate than
having muscles with multiple functions. The ratios, which are rounded for each
clinical interpretation, were very consistent among this population of healthy sub-
jects. These ndings warrant further research into muscle ratios in patients with
shoulder pathologies, which may identify specic decits relative to these patholo-
gies. This information can help focus evidence-based rehabilitation programs.
Given that the number of subjects in each activity-level group ranged from 52
to 66, we realize that this is a limited number for a normative database covering
the 3 subgroups. We purposefully chose to include all 3 activity groups in our
sample, as opposed to just concentrating data collection on 1 of the subgroups (ie,
only considering unilateral activity), to provide clinicians with some initial direc-
tion concerning normal scapulothoracic muscle function across various athletes
evaluated clinically. Therefore, we recommend using the 90% condence inter-
vals given as a practical clinical guideline. Again, given the lack of other pub-
lished data addressing this issue, this work becomes a foundation and we strongly
recommend future research to expand on it.
There were several limitations of this study. The scapulothoracic muscles are
difcult to test with a handheld dynamometer without crossing multiple joints.
We decided that it was important to use previously studied and widely accepted
manual muscle tests with as few modications as possible when using the hand-
held dynamometer. Several studies have demonstrated increased middle-trapezius
EMG activity with the position used to test the lower trapezius.
11,22
The middle
trapezius may help eccentrically control upward rotation of the scapula by limit-
ing scapular abduction, which may contribute to this increased activity during the
lower-trapezius test.
27
However, isolating the middle trapezius’ function as a
scapular retractor in 90° of abduction and neutral rotation (elbow exed to 90°)
helps bias the test to measure only the middle trapezius’ strength.
28
We used the
position presented in Figure 4 for several reasons. First, it is the most commonly
described position in most manual-muscle-testing texts. Even though the lower
trapezius produces high EMG activity in this position, it also is heavily involved
with the upward-rotation force couple. Thus, the high EMG activity previously
described likely represents the lower trapezius’ producing a synergistic activation
to prevent scapular rotation. By using the position in Figure 4, we isolated the
movement pattern for scapular retraction without the confounding rotations or
force-couple coactivations. Furthermore, to establish unilateral ratios, we elected
to establish the protraction:retraction ratios and felt that this muscle was a better
indicator because it has a uniplanar function as opposed to multiplanar function.
Michener et al
22
previously established the validity of the positions used for upper
and lower trapezius using a handheld dynamometer. Given that Smith et al
8
found
no differences between the Kendall, Kendall-alternative, and Hislop-Montgomery
rhomboid-testing positions using surface EMG, it seems that the test position
used in this study does adequately recruit the rhomboid muscles. Michener et al
did not establish construct validity for the serratus anterior using a modied Ken-
dall position. However, testing the patient in sitting and with the arm elevated
above 120° may have helped reduce compensations and increase EMG activity.
22
Challenging the serratus anterior as an upward rotator, as well as scapular pro-
tractor, has been shown to increase EMG activity in the serratus anterior.
11
Page 16
518 Turner et al
In addition, with the particular model of handheld dynamometer used, there
were issues when using a rigid end plate instead of a hand. Pain inhibition may
have been a factor in our study, because of the shape of handheld-dynamometer
force plates (end pieces). Attempts were made to reduce pain inhibition by avoid-
ing placement directly over bony prominences, but maintaining consistency of
dynamometer placement limited our ability to avoid this completely. With respect
to dynamometer positioning and pain inhibition, any test that did not appear to be
the subject’s maximal effort was repeated. We feel that any dynamometer with
similar pads would yield similar results. However, further research in this area
may benet from using a more comfortable dynamometer. Even though pilot test-
ing demonstrated acceptable intrarater and interrater reliability, having 2 testers
increases the variance in the measurements. Several studies have shown that tester
strength affects the measurements; however, we feel that this was not a factor in
our study, given the results of our reliability study. However, a few subjects did
present a problem to the testers when performing the upper-trapezius strength
testing. This issue would be anticipated to be a bigger problem when testing ath-
letes in strength-dominant sports (ie, football, power lifting, bodybuilding, etc). In
the current study, the upper trapezius was the only muscle with the potential to
produce a ceiling effect with strength testing. However, given the results that dem-
onstrate the signicant differences between the upper trapezius and all other mus-
cles tested, we do not feel that this is a clinically relevant issue.
This sample included subjects across a large age range and with varying
levels of overhead activity. Perhaps future studies attempting to establish norma-
tive data should examine the effects of age and sex on scapulothoracic strength.
Future studies in this area would also benet from having a larger sample size in
an effort to establish normative data that are more representative of the general
population. In addition, the ndings of this study can only be generalized to the
dominant arm of a given subject or patient. Future studies need to address the
effects of arm dominance on scapulothoracic strength. Further research could also
consider volume of training and sport specicity with scapular muscle function to
better rene the normative values begun with this manuscript. The strength differ-
ence between sexes is an important area for further consideration, as well.
Conclusion
The strength of the 5 scapulothoracic muscles was measured in 172 subjects with
no history of shoulder dysfunction using a handheld dynamometer. When the sub-
jects were classied by overhead-activity level, a rank order for strength was
established in the bilateral overhead-activity group (upper trapezius, serratus ante-
rior, middle trapezius, rhomboids, and lower trapezius). When the strength of the
scapulothoracic muscles as a unilateral ratio was examined, no signicant differ-
ences occurred across activity levels. The elevation:depression ratio was approxi-
mately 2.5:1, upward to downward rotation approximately 1.5:1, and protraction
to retraction approximately 1.25:1. The consistency of the ratios across overhead-
activity levels could provide a practical clinical guideline for establishing exercise
progression and meeting discharge criteria. We hope this information can lead to
better objective documentation and customized rehabilitation programs based on
the objective evidence and normative data.
Page 17
Normative Data on Scapulothoracic Musculature 519
Normative data enable clinicians to better analyze strength objectively, as
well as set appropriate strength goals. This information can also be used to help
prevent injuries in performance-enhancement programs or as a screening tool. As
physical therapy continues to move toward a direct-access setting, a continued
commitment to objective documentation, practical clinical guidelines, and
evidence-based rehabilitation programs is increasingly important.
References
1. Kibler W. The role of the scapula in athletic shoulder function. Am J Sports Med.
1998;28(2):325–338.
2. Paine RM, Voight M. The role of the scapula. J Orthop Sports Phys Ther.
1993;18(1):386–391.
3. McClure PW, Michener LA, Karduna AR. Shoulder function and 3-dimensional scap-
ular kinematics in people with and without shoulder impingement syndrome. Phys
Ther. 2006;86(8):1075–1090.
4. Thigpen CA, Padua DA, Morgan N, Kreps C, Karas SG. Scapular kinematics during
supraspinatus rehabilitation exercises; a comparison of full-can versus empty-can
techniques. Am J Sports Med. 2006;34(4):644–652.
5. Cools AM, Witvrouw EE, Mahieu NN, Danneels LA. Isokinetic scapular muscle per-
formance in overhead athletes with and without impingement symptoms. J Athl Train.
2005;40(2):104–110.
6. Kamkar A, Irrgang J, Whitney S. Non-operative management of secondary shoulder
impingement syndrome. J Orthop Sports Phys Ther. 1993;17(5):212–224.
7. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle
activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276–
291.
8. Smith J, Dietrich C, Kotajarvi B, Kaufman K. The effect of scapular protraction
on isometric shoulder rotation strength in normal subjects. J Shoulder Elbow Surg.
2006;15(3):339–343.
9. Neumann D. Kinesiology of the Musculoskeletal System: Foundations for Physical
Rehabilitation. 1st ed. St Louis, MO: Mosby; 2002.
10. Ludewig PM, Cook TM. Translation of the humerus in persons with shoulder impinge-
ment. J Orthop Sports Phys Ther. 2002;32(6):248–259.
11. Ekstrom RA, Donatelli RA, Soderberg GL. Surface electromyographic analysis of
exercises for the trapezius and serratus anterior muscles. J Orthop Sports Phys Ther.
2003;33(5):247–258.
12. Andrews AW, Thomas MW, Bohannon RW. Normative values for isometric
muscle force measurements obtained with hand held dynamometers. Phys Ther.
1996;76(3):248–259.
13. Bohannon RW. Manual muscle test scores and dynamometer test scores of knee
extension strength. Arch Phys Med Rehabil. 1986;67:390–392.
14. Bohannon RW. Upper extremity strength and strength relationships among young
women. J Orthop Sports Phys Ther. 1986;8(3):128–133.
15. Bohannon RW. Test-retest reliability of hand held dynamometry during a single ses-
sion of strength assessment. Phys Ther. 1986;66(2):206–209.
16. Bohannon RW. Nature of age-related changes in muscle strength of the extremities of
women. Percept Mot Skills. 1996;83:1155–1160.
17. Bohannon RW. Intertester reliability of hand-held dynamometry: a concise summary
of published research. Percept Mot Skills. 1999;88:899–902.
18. Bohannon RW. Measuring knee extensor muscle strength. Am J Sports Med.
2001;80:13–18.
Page 18
520 Turner et al
19. Bohannon RW, Andrews AW. Interrater reliability of hand held dynamometry. Phys
Ther. 1987;67(6):931–933.
20. Bohannon R, Saunders N. Hand-held dynamometry: a single trial may be adequate for
measuring muscle strength in healthy individuals. Physiother Can. 1990;42(1):6–9.
21. Byl N, Richards N, Asturias J. Intrarater and interrater reliability of strength measure-
ments of the biceps and deltoid using a hand held dynamometer. J Orthop Sports Phys
Ther. 1988;9(12):399–405.
22. Michener LA, Boardman ND, Pidcoe PE, Frith AM. Scapular muscle tests in subjects
with shoulder pain and functional loss: reliability and construct validity. Phys Ther.
2005;85(11):1128–1138.
23. Wikholm JB, Bohannon RW. Hand-held dynamometer measurements: tester strength
makes a difference. J Orthop Sports Phys Ther. 1991;13(4):191–197.
24. Kibler WB, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am
Acad Orthop Surg. 2003;11(2):142–151.
25. Moseley JB Jr, Jobe FW, Pinks M, Perry J, Tibone J. EMG analysis of the scapular
muscles during a shoulder rehabilitation program. Am J Sports Med. 1992;20(2):128–
134.
26. Townsend H, Jobe F, Pink M, Perry J. Electromyographic analysis of the glenohumeral
muscles during a baseball rehabilitation program. Am J Sports Med. 1991;19(3):264–
272.
27. Ekstrom RA, Soderberg GL, Donatelli RA. Normalization procedures using maxi-
mum voluntary isometric contractions for the serratus anterior and trapezius muscles
during surface EMG analysis. J Electromyogr Kinesiol. 2005;15:418–428.
28. Hislop H, Montgomery J. Daniels and Worthingham’s Muscle Testing: Techniques of
Manual Examination. 7th ed. Philadelphia, PA: Elsevier Science; 2002.
29. Ekstrom RA, Bifulco KM, Lopau CJ, Andersen CF, Gough JR. Comparing the func-
tion of the upper and lower parts of the serratus anterior muscle using surface electro-
myography. J Orthop Sports Phys Ther. 2004;34:235–243.
30. Smith J, Padgett D, Kenton R, et al. Rhomboid muscle electromyography activity
during 3 different manual muscle tests. Arch Phys Med Rehabil. 2004;85:987–992.
31. Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability
studies. Stat Med. 1998;17(1):101–110.
32. Millar AL, Jasheway PA, Eaton W, Christensen F. A retrospective, descriptive study
of shoulder outcomes in outpatient physical therapy. J Orthop Sports Phys Ther.
2006;36(6):403–414.
Page 19
    • "It is reasonable to assume that the dominant limb is more frequently used in daily activities compared to the non-dominant limb; therefore this data suggests there may be increased UT, SA, and MT strength in the dominant limb compared to the non-dominant limb. However, no studies have directly investigated the effects of arm dominance on scapular muscle strength or endurance in healthy individuals [12]. The purpose of this study was to investigate the effect of arm dominance on scapular muscle strength, measured with a HHD, and scapular muscle endurance in healthy individuals. "
    [Show abstract] [Hide abstract] ABSTRACT: BACKGROUND PURPOSE: Scapular muscle performance is potentially influenced by arm dominance. The purpose of this study was to investigate the effect of arm dominance on clinical measures of scapulohumeral muscle strength and endurance. METHODS: Thirty-two healthy individuals between the ages of 30 and 65 years were recruited to participate. Scapular muscle strength of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) were recorded with a hand held dynamometer. One scapulohumeral isometric muscle endurance task was performed in prone. The order of testing (strength and endurance) was randomized for each individual. Dominant to non-dominant strength and endurance measures were compared with paired t-tests. RESULTS: Arm dominance was significantly higher for UT strength (p < 0.001) and endurance (p = 0.015). However, the differences between the dominant and non-dominant limbs were not beyond minimal detectable change values. CONCLUSION: It does not appear that scapulohumeral muscle strength and endurance is clinically different for the dominant and non-dominant limbs in a middle age healthy population.
    No preview · Article · Jul 2015 · Physiotherapy Practice and Research
  • Source
    • "fl üstü spor aktivitesi yapan denekte kas kuvvetine bak›lm›flt›r . Sonuçta elevasyon/depresyon kas kuvveti oran› 2.5/1, yukar›/afla¤› rotasyon oran› 1.5/1 ve protraksiyon/ retraksiyon oran› 1.25/1 bulunmufltur. Kas kuvvetleri aras›ndaki bu imbalans istatistiksel anlaml› bulunmufl ve skapular kaslar›n omuz rehabilitasyonundaki önemi vurgulanm›flt›r. [35] Biz de bu çal›flmaya paralel sonuçlar elde ettik. Serratus anterior, orta trapez ve supraspinatus kas kuvveti impingement bulgusu negatif olan omuzlara göre daha zay›f bulundu . Fakat literatürde özellikle impingement semptomlar›na yol açt›¤› vurgulanan artm›fl üst trapez ve azalm›fl alt trapez iliflkisini ortaya koyamad›k. [36] fiimdiy"
    [Show abstract] [Hide abstract] ABSTRACT: We evaluated the relationship between muscle strength and pain in subacromial impingement syndrome (SIS). 18 female, 2 male twenty patients (mean age 48.15±5.9 years; range 32 to 60 years) with Stage I and II SIS were enrolled in the study. Upper, middle and lower trapezius, serratus anterior, supraspinatus and anterior deltoid muscle strengths were assessed bilaterally by a handheld dynamometer. Each muscle was assessed 3 times and the mean value of strength was calculated. Pain and functional results were assessed with visual analog scale (VAS), and Constant scores. Modified Constant score was calculated, with the exclusion of pain parameters. Middle trapezius, serratus anterior, supraspinatus and anterior deltoid muscle strengths of the shoulder with positive impingement signs were significantly lower than healthy opposite side (p=0.01, p=0.04, p=0.01, p=0.003). The mean Constant score was 57.46 and the mean VAS 6.85, in shoulders with SIS. There was a significant correlation between VAS and Constant score, without pain assessment (p=0.016, rs= -0.44) In this study we found a relationship between the middle trapezius, serratus anterior, supraspinatus and anterior deltoid muscle weaknesses and pain in SIS. This result indicates that these muscles should be evaluated and strengthened in required cases during the rehabilitation.
    Full-text · Article · Jan 2011 · acta orthopaedica et traumatologica turcica
  • Source
    • " anterior. In conclusion the elevation/depression muscle strength rate was 2.5/1, the upwards/downwards rotation rate was 1.5/1, and the protraction/retraction rate was 1.25/1. The imbalance between the muscle strengths was accepted to be statistically significant, and the importance of scapular muscles in shoulder rehabilitation was high- lighted. [35] In our study, we have obtained similar results. The muscle strength of the serratus anterior, the middle trapezius, and the supraspinatus was lower than the muscle strength of shoulders with negative impingement syndrome. However, we unable to prove the correlation of increased upper and decreased lower trapezoids caused by impingement "
    Full-text · Article · Jan 2011 · acta orthopaedica et traumatologica turcica
Show more