Monitoring Drug-Induced H2AX as a Pharmacodynamic Biomarker in Individual Circulating Tumor Cells

Laboratory of Human Toxicology and Pharmacology, Science Applications International Corporation, Frederick, MD, USA.
Clinical Cancer Research (Impact Factor: 8.72). 02/2010; 16(3):1073-84. DOI: 10.1158/1078-0432.CCR-09-2799
Source: PubMed


Circulating tumor cells (CTC) in peripheral blood of patients potentially represent a fraction of solid tumor cells available for more frequent pharmacodynamic assessment of drug action than is possible using tumor biopsy. However, currently available CTC assays are limited to cell membrane antigens. Here, we describe an assay that directly examines changes in levels of the nuclear DNA damage marker gammaH2AX in individual CTCs of patients treated with chemotherapeutic agents.
An Alexa Fluor 488-conjugated monoclonal gammaH2AX antibody and epithelial cancer cell lines treated with topotecan and spiked into whole blood were used to measure DNA damage-dependent nuclear gammaH2AX signals in individual CTCs. Time-course changes in both CTC number and gammaH2AX levels in CTCs were also evaluated in blood samples from patients undergoing treatment.
The percentage of gammaH2AX-positive CTCs increased in a concentration-dependent manner in cells treated with therapeutically relevant concentrations of topotecan ex vivo. In samples from five patients, percent gammaH2AX-positive cells increased post-treatment from a mean of 2% at baseline (range, 0-6%) to a mean of 38% (range, 22-64%) after a single day of drug administration; this increase was irrespective of increases or decreases in the total CTC count.
These data show promise for monitoring dynamic changes in nuclear biomarkers in CTCs (in addition to CTC count) for rapidly assessing drug activity in clinical trials of molecularly targeted anticancer therapeutics as well as for translational research.

Download full-text


Available from: Joseph E Tomaszewski
  • Source
    • "Serum tumor markers can become elevated in nonmalignant disease states, when patients are experiencing a response to treatment, and may respond slowly to changes in disease status. In contrast, CTCs have high specificity for MBC and respond promptly to changes in disease state [8, 14, 44]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Circulating tumor cells (CTCs) were discovered nearly 150 years ago but have only recently been recognized as a feature of most solid tumors due to their extremely low concentration in the peripheral circulation. Several technologies have been developed to isolate and analyze CTCs, which can now be routinely accessed for clinical information. The most mature of these (the CELLSEARCH system) uses immunomagnetic selection of epithelial cell adhesion molecule to isolate CTCs for analysis. Studies using this system have demonstrated that categorization of patients into high and low CTC groups using a validated decision point is prognostic in patients with metastatic breast, colorectal, or prostate cancer. Initial attempts to use CTC counts to guide therapeutic decisions appeared to yield positive results and key concepts in clinical application of CTC information, including the CTC cutoff, predictive value in disease subtypes, and comparison to current evaluation methods, have been demonstrated. Clinical studies of the impact of CTC counts in routine clinical practice are ongoing; however, recent published evidence on the clinical use of CTCs in metastatic breast cancer continues to support these concepts, and experience in the community oncology setting also suggests that CTC enumeration can be useful for therapy management.
    Full-text · Article · Mar 2013 · Journal of Oncology
  • Source
    • "The initial study of γ-H2AX expression in CTC by Wang et al. (2010), and further studies by Kummar et al. (2011, 2012) used the FDA approved, positive selection technology for CTCs, "
    [Show abstract] [Hide abstract]
    ABSTRACT: Circulating tumor cells (CTCs) are prognostic markers in a variety of solid tumor malignancies. The potential of CTCs to be used as a "liquid biopsy" to monitor a patient's condition and predict drug response and resistance is currently under investigation. Using a negative depletion, enrichment methodology, CTCs isolated from the peripheral blood of breast cancer patients with stage IV breast cancer undergoing DNA damaging therapy with platinum-based therapy were enriched. The enriched cell suspensions were stained with an optimized labeling protocol targeting: nuclei, cytokeratins 8, 18, and 19, the surface marker CD45, and the presence of the protein γ-H2AX. As a direct or indirect result of platinum therapy, double-strand break of DNA initiates phosphorylation of the histone H2AX, at serine 139; this phosphorylated form is referred to as γ-H2AX. In addition to γ-H2AX staining in specific locations with the cell nuclei, consistent with previous reports and referred to as foci, more general staining in the cell cytoplasm was also observed in some cells suggesting the potential of cell apoptosis. Our study underscores the utility and the complexity of investigating CTCs as predictive markers of response to various therapies. Additional studies are ongoing to evaluate the diverse γ-H2AX staining patterns we report here which needs to be further correlated with patient outcomes.
    Full-text · Article · Oct 2012 · Frontiers in Oncology
  • Source
    • "This suggests that CTCs from metastatic sites can in themselves seed new sites (e.g., [29]). In addition, recent studies have shown that CTC markers may change over the course of therapy (e.g., [30]). "
    [Show abstract] [Hide abstract]
    ABSTRACT: This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC) technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development-analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA) and the US National Cancer Institute (NCI).
    Full-text · Article · Jul 2012 · Journal of Translational Medicine
Show more