Article

Consistent Beneficial Effects of Killer Cell Immunoglobulin-Like Receptor 2DL3 and Group 1 Human Leukocyte Antigen-C Following Exposure to Hepatitis C Virus

Department of Hepatology, Division of Medicine, Imperial College London, UK.
Hepatology (Impact Factor: 11.06). 04/2010; 51(4):1168-75. DOI: 10.1002/hep.23477
Source: PubMed

ABSTRACT

Natural killer cells are a key component in the immune control of viral infections. Their functions are controlled by inhibitory receptors for major histocompatability complex (MHC) class I, including the killer cell immunoglobulin-like receptors (KIR). KIR2DL3 in combination with its cognate human leukocyte antigen (HLA)-C ligand has been shown to be associated with spontaneous resolution of viremia following hepatitis C virus (HCV) infection. In order to determine if this gene combination is advantageous across all potential outcomes following HCV exposure, we studied individuals with apparent resistance to HCV infection who remain seronegative and aviremic despite long-term injection drug use and also individuals chronically infected with HCV who successfully clear HCV with treatment. Homozygosity for KIR2DL3 in combination with group 1 HLA-C allotypes was more frequent in exposed seronegative aviremic individuals as compared to those with chronic HCV (25.0% versus 9.7%, P = 0.003, odds ratio [OR] = 3.1, 95% confidence interval [CI] = 1.3-7.1) in a model similar to that found for those spontaneously resolving HCV. In individuals undergoing treatment for HCV, those with KIR2DL3 and group 1 HLA-C were more likely to make a sustained virological response (SVR) (P = 0.013, OR = 2.3, 95% CI = 1.1-4.5). KIR and HLA-C protection in both treatment response and spontaneously resolving HCV was validated at the allelic level, in which KIR2DL3-HLA-Cw*03 was associated with SVR (P = 0.004, OR = 3.4, 95% CI = 1.5-8.7) and KIR2DL3/KIR2DL3-HLA-Cw*03 was associated with spontaneous resolution of HCV infection (P = 0.01, OR = 2.3, 95% CI = 1.2-4.4). Conclusion: KIR and HLA-C genes are consistently beneficial determinants in the outcome of HCV infection. This advantage extends to the allelic level for both gene families.

Download full-text

Full-text

Available from: Ann-Margaret Little, Oct 16, 2014
  • Source
    • "However, as NK cells are the first immunological walls against HCV, much evidence has been uncovered. An NK-cell activating and inhibitory receptor gene polymorphism has been discovered to have roles in the course of HCV infection [54, 55]. As IFN-α is the basic treatment for chronic hepatitis C, IFN-producing NK cells have been defined as key immune cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis B and C often progress to decompensated liver cirrhosis requiring orthotopic liver transplantation (OLT). After OLT, hepatitis B recurrence is clinically controlled with a combination of hepatitis B immunoglobulin (HBIG) and nucleos(t)ide analogues. Another approach is to induce self-producing anti-hepatitis B virus (HBV) antibodies using a HBV envelope antigen vaccine. Patients who had not been HBV carriers such as acutely infected liver failure or who received liver from HBV self-limited donor are good candidate. For chronic HBV carrier patients, a successful response can only be achieved in selected patients such as those treated with experimentally reduced immunosuppression protocols or received an anti-HBV adaptive memory carrying donor liver. Hepatitis C virus (HCV) reinfects transplanted livers at a rate of >90%. HCV reinfected patients show different severities of hepatitis, from mild and slowly progressing to severe and rapidly progressing, possibly resulting from different adaptive immune responses. More than half the patients require interferon treatment, although the success rate is low and carries risks for leukocytopenia and rejection. Managing the immune response has an important role in controlling recurrent hepatitis C. This study aimed to review the adaptive immune response in post-OLT hepatitis B and C.
    Full-text · Article · Aug 2014
  • Source
    • "To maintain functional recognition of rapidly evolving class I HLA complexes, the NK cell KIR genes must also evolve under pathogen-mediated pressure [59, 60]. Genotyping of those exposed to HCV demonstrated that coordinate expression of NK cell receptor KIR2DL3 and its cognate class I HLA C group 1 (HLA-C1) ligand confers an increased likelihood of spontaneous HCV clearance or of a sustained virological response (SVR) to treatment when spontaneous HCV clearance is not achieved [14, 56, 61]. One functional interpretation of this association is that as the interaction between KIR2DL3 and HLA-C1 is relatively low affinity, it generates a weaker inhibitory signal than other KIR/ligand interactions allowing a greater functional response by NK cells [57, 58]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20%) of those exposed to hepatitis C virus (HCV) spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK) cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA) genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.
    Full-text · Article · Jun 2014 · BioMed Research International
  • Source
    • "Also during LCMV infection in mice, pDCs contribute to IFN-I production (Lang et al., 2010), which is a critical component of NK cell activation and cytotoxicity (Biron et al., 2002). In humans, the expression of inhibitory NK cell receptors correlates with elimination of HCV and decreased liver cell damage in human cohorts (Khakoo et al., 2004;Knapp et al., 2010;Paladino et al., 2007). However, recent studies show that following IFN-I treatment, immediate increase in serum ALT concentration correlated with an increase in NK cell cytotoxicity and virus elimination, suggesting a protective role of NK cells during viral induced hepatitis (Ahlenstiel et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite development of new antiviral drugs, viral infections are still a major health problem. The most potent antiviral defense mechanism is the innate production of type I interferon (IFN-I), which not only limits virus replication but also promotes antiviral T cell immunity through mechanisms, which remain insufficiently studied. Using the murine lymphocytic choriomeningitis virus model system, we show here that IFN-I signaling on T cells prevented their rapid elimination in vivo. Microarray analyses uncovered that IFN-I triggered the expression of selected inhibitory NK-cell-receptor ligands. Consequently, T cell immunity of IFN-I receptor (IFNAR)-deficient T cells could be restored by NK cell depletion or in NK-cell-deficient hosts (Nfil3(-/-)). The elimination of Ifnar1(-/-) T cells was dependent on NK-cell-mediated perforin expression. In summary, we identified IFN-I as a key player regulating the protection of T cells against regulatory NK cell function.
    Full-text · Article · Jun 2014 · Immunity
Show more