Quadriceps Muscle Function during Recreational Alpine Skiing

Department of Sport Science and Kinesiology, University of Salzburg, Austria.
Medicine and science in sports and exercise (Impact Factor: 3.98). 08/2010; 42(8):1545-56. DOI: 10.1249/MSS.0b013e3181d299cf
Source: PubMed


Since the introduction of carving skis, muscle activity has been investigated primarily on expert-level skiers with respect to EMG intensities. The three-part aim of this recreational skiing study was to analyze functional differences within the quadriceps muscle, to analyze the topographical influence, and to apply a time-frequency analysis of the EMG intensities using wavelets.
Seven female subjects performed two runs through a standardized corridor on a slope with different inclinations (13 degrees , 29 degrees , and 21 degrees ). Knee angle and EMG of vastus lateralis (VL) and rectus femoris (RF) of the right leg were measured during the runs. The recorded EMG signal was resolved with a set of 10 wavelets (11-432 Hz) into a time-frequency space. Subsequently, the EMG intensity and mean frequency (MF) were calculated for different time windows (inside leg; outside leg).
For RF, a significantly higher MF (+15.5%, P = 0.009) but similar EMG intensities were detected in the inside leg compared with the outside leg. For VL, the MF (-9.6%, P = 0.053) and EMG intensities (-54.3%, P = 0.010) were lower in the inside leg compared with the outside leg. Both muscles responded with higher EMG intensities on increasing slope inclination (VL = 90.8%, P = 0.022; RF = 115%, P = 0.01). MF is not directly related to inclination.
Contrary to previously suggested coloading of the inside leg while carving, our results do not support this hypothesis for VL. However, the functional demand for RF in the inside leg is very high when skiing recreationally. The ability of a situation-dependent loading (RF as knee extensor) and unloading (RF as hip flexor) of the inside leg seems to be a crucial point with respect to specific fatigue during a skiing day.

1 Follower
29 Reads
  • Source
    • "The development of skiing skills, muscle strength and adequate postural control depends on the ski training process (Muller and Schwameder, 2003; Kroll et al., 2010). Fransson et al. (2002) investigated the short-term and long-term effects of adaptation to posturography. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Skiing is a sport where balance and strength are critical and which can be practiced actively especially from early years to old age. The purpose of this study is to examine the effect of a 5-day training of skiing skills on dynamic balance performance and development of vertical jump strength in adolescents. Sixteen adolescent volunteers who do not regularly exercise enrolled in the study (age 13.8±.5 years, height 160±8.5 cm, weight 56.6±10.9 kg and body mass index (BMI) 22±3.1 kg/m2). The subjects participated in an intensive ski training program for 5 days for a total of 20 h (4 h of training and 2 h of free exercise). Their dynamic balance performance (on a Sport Expert MED-SP 300 balance platform) and vertical jump (strength) (New Test 2000) were measured before and after the training program. Our study shows that medial/lateral (M/L) balance improved after a 5-day ski training (p<0.05). However, no positive development was observed in postural balance in the anterior/posterior (A/P) plane. This study shows that repeating short-term trainings in sports branches such as skiing could have a more pronounced effect on the improvement of balance and strength.
    Full-text · Article · May 2013 · Educational Research and Reviews
  • Source
    • "One can only speculate as to why training quantity and finishing performance was improved for the GEL group during this intermittent activity. Ingesting the GEL may have maintained the neurological recruitment patterns of muscle during the runs, minimized muscle metabolism disruption, or delayed the change in the frequency spectra with the onset of acute fatigue (Kröll et al., 2010). Acute fatigue can be manifested through two primary paths, peripheral and central. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpine slalom ski racing is a high intensity, complex sport in which racers execute turns every second. Acute fatigue can make the difference in not finishing a run (DNF) or finishing out of contention. The quantity and quality of training often dictates racing success. It is not known if nutritional supplementation can improve performance in this high intensity, short duration activity. The objective of this study was to determine if ingesting a carbohydrate-protein energy gel (GEL) improves finishing success and number of gates completed during 2 hr slalom sessions on two consecutive days of training. Twenty-four racers were matched; one group ingested the GEL, the second group received a liquid placebo (PLA). Total carbohy-drate, protein, and water ingested by the GEL group were 60g, 15g, and 450 mL, while the PLA group ingested 450 mL of PLA. The GEL group had significantly fewer DNF's (7/48 vs. 18/48; p = 0.02) on both days, completed a greater number of training gates on Day 2 (260.3 ± 20.1 vs. 246.3 ± 17.5 gates; p = 0.03), and had a lower RPE (3.9 ± 1.2 vs. 5.3 ± 1.2 on Day 2 (p = 0.004) vs. PLA. The statistical analysis of combined finishing times was not possible due to the high number of DNF's in the PLA group. High intensity slalom performance can be im-proved by the ingestion of an energy gel. The GEL allowed the athletes to improve training quantity and quality and their per-ception of effort was less than skiers who ingested a placebo. Key pointsNutritional supplementation with a carbohydrate/protein sports gel during high intensity ski training improved training volume as measured by the number gates completed.Supplementation also reduced the number of DNF's during training.Racers' perception of effort was significantly lower with the supplement ingestion compared to a non-caloric placebo.This applied study was conducted under real life field conditions and training environments.
    Full-text · Article · Sep 2012 · Journal of sports science & medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs.
    No preview · Article · Mar 2011 · Journal of sports science & medicine
Show more