The Human Variome Project (HVP) 2009 Forum “Towards Establishing Standards”

Genomic Disorders Research Centre, Carlton South, Victoria, Australia.
Human Mutation (Impact Factor: 5.14). 03/2010; 31(3):366-7. DOI: 10.1002/humu.21175
Source: PubMed


The May 2009 Human Variome Project (HVP) Forum "Towards Establishing Standards" was a round table discussion attended by delegates from groups representing international efforts aimed at standardizing several aspects of the HVP: mutation nomenclature, description and annotation, clinical ontology, means to better characterize unclassified variants (UVs), and methods to capture mutations from diagnostic laboratories for broader distribution to the medical genetics research community. Methods for researchers to receive credit for their effort at mutation detection were also discussed.

Download full-text


Available from: Mauno Vihinen, Sep 29, 2014
  • Source
    • "•HVP (Human Variome Project):[58] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.
    Full-text · Article · Nov 2012 · Gut Pathogens
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SPOT (, the SNP prioritization online tool, is a web site for integrating biological databases into the prioritization of single nucleotide polymorphisms (SNPs) for further study after a genome-wide association study (GWAS). Typically, the next step after a GWAS is to genotype the top signals in an independent replication sample. Investigators will often incorporate information from biological databases so that biologically relevant SNPs, such as those in genes related to the phenotype or with potentially non-neutral effects on gene expression such as a splice sites, are given higher priority. We recently introduced the genomic information network (GIN) method for systematically implementing this kind of strategy. The SPOT web site allows users to upload a list of SNPs and GWAS P-values and returns a prioritized list of SNPs using the GIN method. Users can specify candidate genes or genomic regions with custom levels of prioritization. The results can be downloaded or viewed in the browser where users can interactively explore the details of each SNP, including graphical representations of the GIN method. For investigators interested in incorporating biological databases into a post-GWAS SNP selection strategy, the SPOT web tool is an easily implemented and flexible solution.
    Full-text · Article · Jul 2010 · Nucleic Acids Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we analyzed a "variant of uncertain significance" (VUS) located in exon 23 of the BRCA2 gene exhibited by six members of five distinct families with hereditary breast cancer (BC). The variant was identified by DNA sequencing, and cDNA analysis revealed its co-expression with wild-type mRNA. We analyzed co-occurrence with other pathological mutations in BRCA1/2, performed a case-control study, looked for evolutionary data and used in-silico analyses to predict its potential clinical significance. Sequencing revealed an in frame deletion of 126 nucleotides in exon 23, leading to a deletion of 42 amino acids (c.9203_9328del126, p.Pro2992_Thr3033del). All of the VUS-carriers suffered from either BC or ovarian/pancreatic cancer. No other definite pathologic mutation of BRCA genes was found in the five families. The identified deletion could not be observed in a control cohort of 2,652 healthy individuals, but in 5 out of 916 (0.5%) tested BC families without a bona fide pathogenic BRCA1/2 mutation (P = 0.0011). According to these results, the in frame deletion c.9203_9328del126 is a rare mutation strongly associated with familial BC. In summary, our investigations indicate that this BRCA2 deletion is pathogenic.
    No preview · Article · Jan 2012 · Breast Cancer Research and Treatment
Show more