Paleomagnetic and rock-magnetic survey of Brunhes lava flows from Tancitaro volcano, Mexico

Geofísica Internacional (Impact Factor: 0.41). 10/2009; 48(4).
Source: DOAJ


This study presents paleomagnetic results from Tancitaro volcanism in the Michoacan Guanajuato Volcanic Field, western Mexico, as a contribution to the time averaged field global database. Detailed paleomagnetic and rock-magnetic studies were carried out on eleven independent lava flows; 120 oriented, standard paleomagnetic cores were collected from Tancitaro volcano and surrounding areas. All sites were dated by means of 40Ar-39Ar (Ownby et al., 2007) as originating from 793 ka to present. Rock-magnetic experiments included continuous susceptibility and hysteresis measurements. Remanence is carried mostly by Ti-poor titanomagnetite of pseudosingle-domain magnetic structure. Eight out of eleven flows yield normal magnetic polarities while three sites yielded inconsistent paleodirections most probably due to lightning. Mean paleodirection from eight flows is Inc=39.5°, Dec=356.4°, k=29, α95=9.1° which corresponds to a pole position with Plat=84.4°, Plong=219.9°, K=33 and A95=8.5°, practically undistinguishable from expected Plio-Quaternary paleodirections, for the North American Craton. Paleosecular variation is compatible with other studies at the same latitude bands and with recent statistical models. The mean inclination falls within the uncertainties of the Geomagnetic Axial Dipole plus 5% quadrupolar contributions.

Download full-text


Available from: Juan Morales
  • Source

    Full-text · Article ·
  • [Show abstract] [Hide abstract]
    ABSTRACT: The paleosecular variation (PSV) and polarity transitions are two major features of the Earth’s magnetic field. Both PSV and reversal studies are limited when age of studied units is poorly constrained. This is a case of Central and western Mexico volcanics. Although many studies have been devoted to these crucial problems and more than 200 paleomagnetic directions are available for the last 5 Ma, only few sites were dated directly. This paper presents new paleomagnetic results from seventeen independent cooling units in the Michoacán-Guanajuato Volcanic Field (MGVF) in western Mexico. Twelve sites are directly dated by 40Ar/39Ar or K-Ar methods and span from 2.78 to 0.56 Ma. The characteristic paleodirections are successfully isolated for 15 lava flows. The mean paleodirection (inclination I and declination D) obtained in this study is I = 28.8°, D = 354.9°, and Fisherian statistical parameters are k = 28, α95 = 7.3°, N=15, which corresponds to the mean paleomagnetic pole position Plat = 83.9°, Plong = 321.6°, K = 34, A95 = 6.6°. The paleodirections obtained in present study compiled with those, previously reported from the MGVF, are practically undistinguishable from the expected Plio-Quaternary paleodirections. The paleosecular variation is estimated through the study of the scatter of the virtual geomagnetic poles giving SF = 15.9 with SU =21.0 and SL = 12.7 (upper and lower limits respectively). These values agree reasonably well with the recent statistical Models. The oldest sites analyzed (the Santa Teresa and Cerro Alto) yield normal polarity magnetizations as expected for the cooling units belonging to the Gauss geomagnetic Chron. The interesting feature of the record comes from lava flows dated at about 2.35 Ma with clearly defined normal directions. This may point out the possible existence of a normal polarity magnetization in the Matuyama reversed Chron older than the Reunion and may be correlated to Halawa event interpreted as the Cryptochron C2r.2r-1. Another important feature of the geomagnetic record obtained from the MGVF is the evidence of fully reversed geomagnetic field within Bruhnes Chron, at about 0.56 Ma corresponding to the relative paleointensity minimum of global extent found in marine sediments at about 590 ka. Keywordspaleosecular variation–reversals–Western Mexico–time-averaged field–geocentric axial dipole–Trans Mexican Volcanic Belt
    No preview · Article · Apr 2011 · Studia Geophysica et Geodaetica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A significant number of new palaeomagnetic poles have become available since the last time a compilation was made (assembled in 2005, published in 2008) to indicate to us that a new and significantly expanded set of tables with palaeomagnetic results would be valuable, with results coming from the Gondwana craton-ic elements, Laurentia, Baltica/Europe, and Siberia. Following the Silurian Caledonian Orogeny, Laurentia's and Baltica's Apparent Polar Wander Paths (APWPs) can be merged into a Laurussia path, followed in turn by a merger of the Laurussia and Siberia data from latest Permian time onward into a Laurasian combined path. Meanwhile, after about 320 Ma, Gondwana's and Laurussia/Laurasia's path can be combined into what comes steadily closer to the ideal of a Global Apparent Polar Wander Path (GAPWaP) for late Palaeozoic and younger times. Tests for True Polar Wander (TPW) episodes are now feasible since Pangaea fusion and we identify four important episodes of Mesozoic TPW between 250 and 100 Ma. TPW rates are in the order of 0.45–0.8°/M.y. but cumulative TPW is nearly zero since the Late Carboniferous. With the exception of a few intervals where data are truly scarce (e.g., 390–340 Ma), the palaeomagnetic database is robust and allows us to make a series of new palaeogeographic reconstructions from the Late Cambrian to the Palaeogene.
    Full-text · Article · Aug 2012 · Earth-Science Reviews
Show more