Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status

Banque de Tissus et Cellules des Hospices Civils de Lyon, Lyon, France.
Bio-medical materials and engineering (Impact Factor: 1.09). 01/2009; 19(4-5):365-72. DOI: 10.3233/BME-2009-0601
Source: PubMed


Large-scale culture of primary keratinocytes allows the production of large epidermal sheet surfaces for the treatment of extensive skin burns. This method is dependent upon the capacity to establish cultures of proliferating keratinocytes in conditions compatible with their clonal expansion while maintaining their capacity to differentiate into the typical squamous pattern of human epidermis. Feeder layers are critical in this process because the fibroblasts that compose this layer serve as a source of adhesion, growth and differentiation factors. In this report, we have characterise the expression patterns of p63 isoforms in primary keratinocytes cultured on two different feeder layer systems, murine 3T3 and human fibroblasts. We show that with the latter, keratinocytes express a higher ratio of Delta N to TAp63 isoform, in relation with higher clonogenic potential. These results indicate that human fibroblasts represent an adequate feeder layer system to support the culture of primary human keratinocytes.

15 Reads
  • Source
    • "Epithelial cells were cultured as previously described (Auxenfans et al., 2006). Briefly, cells were seeded at 8000–10 000 cells/cm 2 density on a feeder layer of irradiated human fibroblasts (Auxenfans et al., 2009b) in keratinocyte medium composed of "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue-engineered autologous skin is a potential alternative to autograft for burn coverage, but produces poor clinical responses such as unsatisfactory graft intake due to insufficient vascularization. Endothelialized skin equivalents comprising human umbilical vein endothelial cells (HUVECs) survive significantly longer due to inosculation with the capillaries of the host, but these cells are allogeneic by definition. The aim of this study was to reconstruct an autologous endothelialized skin equivalent by incorporating progenitor or pre-differentiated endothelial cells derived from adipose tissue, easily accessible source for autologous transplantation. Human adipose tissue-derived stem cells were isolated from lipoaspirates and amplified to obtain endothelial progenitor cells, which were subsequently differentiated into endothelial cells. These cells were then seeded along with human fibroblasts into a porous collagen-glycosaminoglycan-chitosan scaffold to obtain an endothelialized dermal equivalent. Then, human keratinocytes give rise to a endothelialized skin equivalent. Immunohistochemistry and transmission electron microscopy results demonstrate the presence of capillary-like tubular structures in skin equivalents comprising pre-differentiated endothelial cells, but not endothelial progenitor cells. The former expressed both EN4 and von Willebrand factor, and Weibel-Palade bodies were detected in their cytoplasm. This study demonstrates that adipose tissue is an excellent source of autologous endothelial cells to reconstruct endothelialized tissue equivalents, and that pre-differentiation of stem cells is necessary to obtain vasculature in such models.
    Full-text · Article · Jul 2012 · Journal of Tissue Engineering and Regenerative Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: The use of stem cells is of great interest for the treatment of various pathologies and ultimately for the restoration of organ function. Progress pointing towards future treatments of skin and corneal epithelial stem cell defects are reviewed, including the transplantation of living tissue-engineered substitutes. RECENT FINDINGS: This article focuses on substitutes optimized for permanent replacement of skin and cornea. New skin substitutes for burn care are currently under development. More complex tissue-engineered skin substitutes in which stroma, adipose tissue, capillaries, and neurons are combined with the epithelium are being developed. Some dermal/epidermal substitutes have been applied to the treatment of patients. Cultured corneal epithelial cells have been characterized and more complete corneal substitutes are being designed. Long-term clinical results on the transplantation of cultured corneal stem cells for the treatment of limbal stem cell deficiency have been reported. SUMMARY: Advances in tissue engineering for the development of substitutes that will benefit patients suffering from skin or corneal stem cell deficiencies are reviewed. These products are often a combination of cells, scaffolds and other factors. Key considerations in the development of corneal and skin substitutes for clinical applications are discussed.
    No preview · Article · Dec 2010 · Current opinion in organ transplantation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have linked lung cancer risk with a region of chromosome 15q25.1 containing CHRNA3, CHRNA5 and CHRNB4 encoding α3, α5 and β4 subunits of nicotinic acetylcholine receptors (nAChR), respectively. One of the strongest associations was observed for a non-silent single-nucleotide polymorphism at codon 398 in CHRNA5. Here, we have used pharmacological (antagonists) or genetic (RNA interference) interventions to modulate the activity of CHRNA5 in non-transformed bronchial cells and in lung cancer cell lines. In both cell types, silencing CHRNA5 or inhibiting receptors containing nAChR α5 with α-conotoxin MII exerted a nicotine-like effect, with increased motility and invasiveness in vitro and increasing calcium influx. The effects on motility were enhanced by addition of nicotine but blocked by inhibiting CHRNA7, which encodes the homopentameric receptor α7 subunit. Silencing CHRNA5 also decreased the expression of cell adhesion molecules P120 and ZO-1 in lung cancer cells as well as the expression of DeltaNp63α in squamous cell carcinoma cell lines. These results demonstrate a role for CHRNA5 in modulating adhesion and motility in bronchial cells, as well as in regulating p63, a potential oncogene in squamous cell carcinoma.
    Full-text · Article · May 2011 · Carcinogenesis
Show more