Testosterone Metabolites Differentially Maintain Adult Morphology In A Sexually Dimorphic Neuromuscular System

Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, USA.
Developmental Neurobiology (Impact Factor: 3.37). 03/2010; 70(4):206-21. DOI: 10.1002/dneu.20780
Source: PubMed


The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Androgens are necessary for the development of the SNB neuromuscular system, and in adulthood, continue to influence the morphology and function of the motoneurons and their target musculature. However, estrogens are also involved in the development of the SNB system, and are capable of maintaining function in adulthood. In this experiment, we assessed the ability of testosterone metabolites, estrogens and nonaromatizable androgens, to maintain neuromuscular morphology in adulthood. Motoneuron and muscle morphology was assessed in adult normal males, sham-castrated males, castrated males treated with testosterone, dihydrotestosterone, estradiol, or left untreated, and gonadally intact males treated with the 5alpha-reductase inhibitor finasteride or the aromatase inhibitor fadrozole. After 6 weeks of treatment, SNB motoneurons were retrogradely labeled with cholera toxin-HRP and reconstructed in three dimensions. Castration resulted in reductions in SNB target muscle size, soma size, and dendritic morphology. Testosterone treatment after castration maintained SNB soma size, dendritic morphology, and elevated target muscle size; dihydrotestosterone treatment also maintained SNB dendritic length, but was less effective than testosterone in maintaining both SNB soma size and target muscle weight. Treatment of intact males with finasteride or fadrozole did not alter the morphology of SNB motoneurons or their target muscles. In contrast, estradiol treatment was completely ineffective in preventing castration-induced atrophy of the SNB neuromuscular system. Together, these results suggest that the maintenance of adult motoneuron or muscle morphology is strictly mediated by androgens.

Full-text preview

Available from:
  • Source
    • "This estrogenic support of SNB dendrites is transient , restricted to the early postnatal period: by the 7th week of age, dendritic lengths in estradiol-treated castrates are not different from those in oil-treated castrates and are shorter than those of castrates treated with either testosterone or dihydrotestosterone (Goldstein and Sengelaub, 1994). In adulthood, SNB dendritic lengths in castrates can be fully maintained with dihydrotestosterone or testosterone, but estradiol is completely ineffective in supporting dendritic morphology (Verhovshek et al., 2010). Because estrogendependent SNB dendrite growth is transient and mediated by estrogen action at ERs in the target musculature , we hypothesized that the developmentally restricted estrogen-dependent SNB dendrite growth was mediated by a change in ER expression at the target musculature. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The spinal cord of rats contains the sexually dimorphic, steroid-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In males, SNB dendrite growth is dependent on gonadal steroids: dendrite growth is inhibited after castration, but supported in androgen- or estrogen-treated castrated males. Furthermore, estrogenic support of SNB dendrite growth is mediated by estrogen action at the target musculature, inhibited by estrogen receptor (ER) blockade at the muscle and supported by local estradiol treatment. However, this estrogenic support is restricted to the early postnatal period, after which the morphology of SNB dendrites is insensitive to estrogens. To test if the developmentally restricted effects of estrogens on SNB dendrite growth coincide with the transient expression of ER in the target musculature, ERα expression was assessed during development and in adulthood. ERα expression in extra-Muscle fiber cells was greatest from postnatal day 7 (P7) to P14 and declined after P21. Because this pattern of ERα expression coincided with the period of estrogen-dependent dendrite growth, we tested if limiting hormone exposure to the period of maximal ERα expression in extra-muscle fiber cells could fully support estrogen-dependent SNB dendrite growth. We restricted estradiol treatment in castrated males from P7 to P21 and assessed SNB dendritic morphology at P28. Treating castrates with estradiol implants at the muscle from P7 to P21 supported dendrite growth to normal levels through P28. These data suggest that the transient ERα expression in target muscle could potentially define the critical period for estrogen-dependent dendrite growth in SNB motoneurons. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012.
    Full-text · Article · Jan 2013 · Developmental Neurobiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In adult male rats, androgens are necessary for the maintenance of the motoneurons and their target muscles of the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB) neuromuscular system, regulating motoneuron and muscle morphology, function, and expression of trophic factors. Castration of males results in somal, dendritic, and muscle atrophy as well as increases in brain-derived neurotrophic factor (BDNF) in the target musculature. Because BDNF can have either facilitative or inhibitory effects in other systems, we examined SNB neuromuscular morphology after BDNF blockade using a fusion protein (tyrosine kinase receptor type B IgG). Blockade of BDNF in gonadally intact males resulted in hypertrophy of SNB motoneuron dendrites and target musculature, suggesting that normal levels of BDNF are inhibitory in SNB neuromuscular system. BDNF blockade in castrated males prevented SNB motoneuron atrophy and attenuated target muscle weight loss. This is the first demonstration that the highly androgen-sensitive SNB motoneuron dendrites and target muscles can be maintained in the absence of gonadal hormones and, furthermore, that blocking BDNF can have trophic effects on skeletal muscle. These results suggest that whereas BDNF is involved in the signaling cascade mediating the androgenic support of SNB neuromuscular morphology, its action can be inhibitory. Furthermore, the elevations in BDNF after castration may be responsible for the castration-induced atrophy in SNB motoneurons and target muscles, and the trophic effects of androgens may be mediated in part through a suppression of BDNF. These results may have relevance to therapeutic approaches to the treatment of neurodegenerative disease or myopathies.
    Preview · Article · Nov 2010 · Endocrinology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dendritic arbors of spinal motoneurons are dynamically regulated by a variety of factors, and several lines of evidence indicate that trophic interactions with the target musculature are of central importance. In highly androgen-sensitive motoneuron populations, androgens are thought to regulate motoneuron dendrites through their action at the receptor-enriched target musculature. Using rats transgenically modified to overexpress androgen receptor (AR) in skeletal muscle, we directly tested the hypothesis that the enhanced expression of AR in the target musculature can underlie the androgenic regulation of motoneuron dendritic morphology. The morphology of motoneurons innervating the quadriceps muscle was examined in wild-type (WT) rats as well as in rats that had been transgenically modified to overexpress ARs in their skeletal musculature. Motoneurons innervating the vastus lateralis muscle of the quadriceps in gonadally intact male rats, and castrated males with or without androgen replacement, were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. In WT rats, quadriceps motoneuron dendrites were insensitive to hormonal manipulation. In contrast, quadriceps motoneuron dendrites in gonadally intact transgenic males were larger than those of WT males. Furthermore, overexpression of ARs in the quadriceps muscle resulted in androgen sensitivity in dendrites, with substantial reductions in dendritic length occurring after castration; this reduction was prevented with testosterone replacement. Thus, it appears that the androgen sensitivity of motoneuron dendrites is conferred indirectly via the enrichment of ARs in the musculature.
    No preview · Article · Feb 2011 · Endocrinology
Show more