Diet-Induced Obesity Prevents Interstitial Dispersion of Insulin in Skeletal Muscle

Department of Physiology and Biophysics, University of Southern California, Los Angeles, California, USA.
Diabetes (Impact Factor: 8.1). 12/2009; 59(3):619-26. DOI: 10.2337/db09-0839
Source: PubMed


Obesity causes insulin resistance, which has been interpreted as reduced downstream insulin signaling. However, changes in access of insulin to sensitive tissues such as skeletal muscle may also play a role. Insulin injected directly into skeletal muscle diffuses rapidly through the interstitial space to cause glucose uptake. When insulin resistance is induced by exogenous lipid infusion, this interstitial diffusion process is curtailed. Thus, the possibility exists that hyperlipidemia, such as that seen during obesity, may inhibit insulin action to muscle cells and exacerbate insulin resistance. Here we asked whether interstitial insulin diffusion is reduced in physiological obesity induced by a high-fat diet (HFD).
Dogs were fed a regular diet (lean) or one supplemented with bacon grease for 9-12 weeks (HFD). Basal insulin (0.2 mU x min(-1) x kg(-1)) euglycemic clamps were performed on fat-fed animals (n = 6). During clamps performed under anesthesia, five sequential doses of insulin were injected into the vastus medialis of one hind limb (INJ); the contralateral limb (NINJ) served as a control.
INJ lymph insulin showed an increase above NINJ in lean animals, but no change in HFD-fed animals. Muscle glucose uptake observed in lean animals did not occur in HFD-fed animals.
Insulin resistance induced by HFD caused a failure of intramuscularly injected insulin to diffuse through the interstitial space and failure to cause glucose uptake, compared with normal animals. High-fat feeding prevents the appearance of injected insulin in the interstitial space, thus reducing binding to skeletal muscle cells and glucose uptake.

Download full-text


Available from: Erlinda Kirkman
  • Source
    • "This endothelium acts as a barrier which regulates the exchange of hormones, proteins and small molecules between the vascular compartment and the interstitial space [1,2]. The actions of a hormone or nutrient on a target tissue is implicitly dependent upon the ability of these factors to gain access to the target and numerous studies have indicated that hormone and nutrient concentrations in blood differ from those surrounding cells on the tissue side of the blood vessel endothelium [3,4,5,6,7,8,9,10,11]. In this regard, it is our contention that the significance of the endothelium as a regulator of hormone and substrate access to target tissues is often underappreciated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The vascular endothelium is a dynamic structure responsible for the separation and regulated movement of biological material between circulation and interstitial fluid. Hormones and nutrients can move across the endothelium either via a transcellular or paracellular route. Transcellular endothelial transport is well understood and broadly acknowledged to play an important role in the normal and abnormal physiology of endothelial function. However, less is known about the role of the paracellular route. Although the concept of endothelial dysfunction in diabetes is now widely accepted, we suggest that alterations in paracellular transport should be studied in greater detail and incorporated into this model. In this review we provide an overview of endothelial paracellular permeability and discuss its potential importance in contributing to the development of diabetes and associated complications. Accordingly, we also contend that if better understood, altered endothelial paracellular permeability could be considered as a potential therapeutic target for diabetes.
    Full-text · Article · Apr 2014 · Diabetes & metabolism journal
  • Source
    • "Insulin increases muscle microvascular perfusion and facilitates delivery of nutrients and hormones to the interstitium (6). Animal models of lipid-induced insulin resistance suggest that insulin-mediated microvascular perfusion is already reduced in prediabetic states and relates to impaired insulin action (7,8). Preventing the access of glucose and insulin to myocytes could contribute to lower glucose disposal and place abnormal microvascular insulin action as an early event in the development of T2DM. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased lipid availability reduces insulin-stimulated glucose disposal in skeletal muscle, which is generally explained by fatty acid-mediated inhibition of insulin signaling. It remains unclear whether lipids also impair transcapillary transport of insulin and glucose, which could become rate controlling for glucose disposal. We hypothesized that lipid-induced insulin resistance is induced by inhibiting myocellular glucose uptake and not by interfering with the delivery of insulin or glucose. We measured changes in interstitial glucose and insulin in skeletal muscle of healthy volunteers during intravenous administration of triglycerides plus heparin or glycerol during physiologic and supraphysiologic hyperinsulinemia, by combining microdialysis with oral glucose tolerance tests and euglycemic-hyperinsulinemic clamps. Lipid infusion reduced insulin-stimulated glucose disposal by ∼70% (P < 0.05) during clamps and dynamic insulin sensitivity by ∼12% (P < 0.05) during oral glucose loading. Dialysate insulin and glucose levels were unchanged or even transiently higher (P < 0.05) during lipid than during glycerol infusion, whereas regional blood flow remained unchanged. These results demonstrate that short-term elevation of free fatty acids (FFAs) induces insulin resistance, which in skeletal muscle occurs primarily at the cellular level, without impairment of local perfusion or transcapillary transport of insulin and glucose. Thus, vascular effects of FFAs are not rate controlling for muscle insulin-stimulated glucose disposal.
    Full-text · Article · Aug 2012 · Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: pared with pioglitazone was 1.06 (95% CI, 0.96–1.18) for AMI, 1.27 (95% CI, 1.12–1.45) for stroke, 1.25 (95% CI, 1.16–1.34) for heart failure, 1.14 (95% CI, 1.05–1.24) for death, and 1.18 (95% CI, 1.12–1.23) for the composite of
    Full-text · Article · Oct 2010 · Current Hypertension Reports
Show more