Lu B, Wang S, Francis PJ, et al. Cell transplantation to arrest early changes in an USH2a animal model

Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA.
Investigative ophthalmology & visual science (Impact Factor: 3.4). 12/2009; 51(4):2269-76. DOI: 10.1167/iovs.09-4526
Source: PubMed


Purpose. Usher's syndrome is a combined deafness and blindness disorder caused by mutations in several genes with functions in both the retina and the ear. Here the authors studied morphologic and functional changes in an animal model, the Ush2a mouse, and explored whether transplantation of forebrain-derived progenitor cells might affect the progress of morphologic and functional deterioration. Methods. Ush2a mice were tested at postnatal days (P) 70 to P727 using an optomotor test, which provides a repeatable method of estimating rodent visual acuity and contrast sensitivity. A group of mice that received grafts of forebrain-derived progenitor cells at P80 was tested for up to 10 weeks after grafting. At the end of testing, animals were killed, and eyes were processed for histology. Results. The optomotor test showed that both acuity and contrast sensitivity deteriorated over time; contrast sensitivity showed a deficit even at P70. By contrast, photoreceptor loss was only evident later than 1 year of age, though changes in the intracellular distribution of red/green cone opsin were observed as early as P80. Mice that received transplanted cells performed significantly better than control mice and no longer demonstrated abnormal distribution of red/green opsin where the donor cells were distributed. Conclusions. This study showed that vision impairment was detected well before significant photoreceptor loss and was correlated with abnormal distribution of a cone pigment. Cell transplantation prevented functional deterioration for at least 10 weeks and reversed the mislocalization of cone pigment.

7 Reads
  • Source
    • "The majority of USH genes have been knocked out in mice. All mutant mice suffer from inner ear defects, but only the USH2A knockout mice develop a detectable retinal degeneration [14], [16], [17]. In addition to mouse knock out mutants, zebrafish mutants have also been described for some genes causing Usher syndrome. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients suffering from Usher syndrome (USH) exhibit sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. USH is the most common genetic disorder affecting hearing and vision and is included in a group of hereditary pathologies associated with defects in ciliary function known as ciliopathies. This syndrome is clinically classified into three types: USH1, USH2 and USH3. USH2 accounts for well over one-half of all Usher cases and mutations in the USH2A gene are responsible for the majority of USH2 cases, but also for atypical Usher syndrome and recessive non-syndromic RP. Because medaka fish (Oryzias latypes) is an attractive model organism for genetic-based studies in biomedical research, we investigated the expression and function of the USH2A ortholog in this teleost species. Ol-Ush2a encodes a protein of 5.445 aa codons, containing the same motif arrangement as the human USH2A. Ol-Ush2a is expressed during early stages of medaka fish development and persists into adulthood. Temporal Ol-Ush2a expression analysis using whole mount in situ hybridization (WMISH) on embryos at different embryonic stages showed restricted expression to otoliths and retina, suggesting that Ol-Ush2a might play a conserved role in the development and/or maintenance of retinal photoreceptors and cochlear hair cells. Knockdown of Ol-Ush2a in medaka fish caused embryonic developmental defects (small eyes and heads, otolith malformations and shortened bodies with curved tails) resulting in late embryo lethality. These embryonic defects, observed in our study and in other ciliary disorders, are associated with defective cell movement specifically implicated in left-right (LR) axis determination and planar cell polarity (PCP).
    Full-text · Article · Sep 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Usher syndrome (USH) is the most prevalent cause of hereditary deafness-blindness in humans. In this review, we pinpoint new insights regarding the molecular mechanisms defective in this syndrome, its molecular diagnosis and prospective therapies. Animal models wherein USH proteins were targeted at different maturation stages of the auditory hair cells have been engineered, shedding new light on the development and functioning of the hair bundle, the sound receptive structure. Improved protocols and guidelines for early molecular diagnosis of USH (USH genotyping microarrays, otochips and complete Sanger sequencing of the 366 coding exons of identified USH genes) have been developed. Approaches to alleviate or cure hearing and visual impairments have been initiated, leading to various degrees of functional rescuing. Whereas the mechanisms underlying hearing impairment in USH patients are being unraveled, showing in particular that USH1 proteins are involved in the shaping of the hair bundle and the functioning of the mechanoelectrical transduction machinery, the mechanisms underlying the retinal defects are still unclear. Efforts to improve clinical diagnosis have been successful. Yet, despite some encouraging results, further development of therapeutic approaches is necessary to ultimately treat this dual sensory defect.
    Full-text · Article · Dec 2011 · Current opinion in neurology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Usher syndrome is the most common deafness-blindness caused by genetic mutations. To date, three genes have been identified underlying the most prevalent form of Usher syndrome, the type II form (USH2). The proteins encoded by these genes are demonstrated to form a complex in vivo. This complex is localized mainly at the periciliary membrane complex in photoreceptors and the ankle-link of the stereocilia in hair cells. Many proteins have been found to interact with USH2 proteins in vitro, suggesting that they are potential additional components of this USH2 complex and that the genes encoding these proteins may be the candidate USH2 genes. However, further investigations are critical to establish their existence in the USH2 complex in vivo. Based on the predicted functional domains in USH2 proteins, their cellular localizations in photoreceptors and hair cells, the observed phenotypes in USH2 mutant mice, and the known knowledge about diseases similar to USH2, putative biological functions of the USH2 complex have been proposed. Finally, therapeutic approaches for this group of diseases are now being actively explored.
    Full-text · Article · Jan 2012 · Frontiers in Bioscience
Show more