Effect of hepatic CYP inhibitors on the metabolism of sildenafil and formation of its metabolite, N-desmethylsildenafil, in rats in vitro and in vivo

Article · December 2009with33 Reads
DOI: 10.1211/jpp/61.12.0008 · Source: PubMed

    Abstract

    It has been reported that hepatic cytochrome P450 (CYP)2C9 and CYP3A4 are responsible for the metabolism of sildenafil and formation of its metabolite, N-desmethylsildenafil, in humans. However, in-vivo studies in rats have not been reported.
    Sildenafil (20 mg/kg) was administered intravenously to rats pretreated with sulfaphenazole, cimetidine, quinine hydrochloride or troleandomycin, inhibitors of CYP2C6, CYP2C11, CYP2D subfamily and CYP3A1/2, respectively. In-vitro studies using rat liver microsomes were also performed.
    The area under the plasma-concentration time curve (AUC) was increased and clearance of sildenafil decreased in rats pretreated with cimetidine or troleandomycin. The AUC ratio for N-desmethylsildenafil (0-4 h) : sildenafil (0-infinity) was significantly decreased only in rats pretreated with cimetidine. Similar results were obtained in the in-vitro study using rat liver microsomes.
    Sildenafil is metabolised via hepatic CYP2C11 and 3A1/2, and N-desmethylsildenafil is mainly formed via hepatic CYP2C11 in rats. Thus, rats could be a good model for pharmacokinetic studies of sildenafil and N-desmethylsildenafil in humans.