PBK/TOPK in the differential diagnosis of cholangiocarcinoma from hepatocellular carcinoma and its involvement in prognosis of human cholangiocarcinoma

State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Human pathology (Impact Factor: 2.77). 11/2009; 41(3):415-24. DOI: 10.1016/j.humpath.2009.05.016
Source: PubMed


The increased expression of PDZ binding kinase/lymphokine-activated killer T-cell-originated protein kinase (PBK/TOPK) is associated with some human malignant tumors. In this study, we analyzed PBK/TOPK expression in hepatic primary tumor and explored its role in cholangiocarcinoma biology. Seventy-four cholangiocarcinomas, 33 hepatocellular carcinomas, and 10 normal liver tissues were prepared from paraffin-embedded specimens. PBK/TOPK protein was assessed by immunohistochemical staining, and the survival time was analyzed with the Kaplan-Meier method. The protein, mRNA of PBK/TOPK, and cell cycle of cholangiocarcinoma cell line after PBK/TOPK suppression with small interfere RNA were studied by Western blot, semiquantitative reverse transcriptase-polymerase chain reaction, and flow cytometry, respectively. PBK/TOPK was usually expressed in normal bile duct epithelial cells and much more frequently expressed in cholangiocarcinoma (68/74) but never expressed in hepatocytes and hepatocellular carcinomas (0/33). PBK/TOPK down-regulation was related to the poor prognosis of patients with cholangiocarcinoma (P = .013). Epidermal growth factor can enhance PBK/TOPK expression in cholangiocarcinoma QBC 939 cells, but suppression of PBK/TOPK in the cells did not affect their proliferation. PBK/TOPK protein could serve as a useful indicator for histopathologic differentiation between cholangiocarcinoma and hepatocellular carcinomas and the low expression of PBK/TOPK is predicative of poor survival in cholangiocarcinoma patients.

Download full-text


Available from: Jihong Cui
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The serine-threonine mitogen-activated protein kinase kinase family member T-LAK cell-originated protein kinase (TOPK/PBK) is heavily involved in tumor development, cancer growth, apoptosis, and inflammation. Despite the identification of TOPK as a promising novel therapeutic target, no inhibitor of TOPK has yet been reported. In this study, we screened 36 drug candidates using an in vitro kinase assay and identified the novel TOPK inhibitor HI-TOPK-032. In vitro, HI-TOPK-032 strongly suppressed TOPK kinase activity but had little effect on extracellular signal-regulated kinase 1 (ERK1), c-jun-NH2-kinase 1, or p38 kinase activities. HI-TOPK-032 also inhibited anchorage-dependent and -independent colon cancer cell growth by reducing ERK-RSK phosphorylation as well as increasing colon cancer cell apoptosis through regulation of the abundance of p53, cleaved caspase-7, and cleaved PARP. In vivo, administration of HI-TOPK-032 suppressed tumor growth in a colon cancer xenograft model. Our findings therefore show that HI-TOPK-032 is a specific inhibitor of TOPK both in vitro and in vivo that may be further developed as a potential therapeutic against colorectal cancer.
    Preview · Article · Apr 2012 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study concerns expression of PBK/TOPK during differentiation of HL-60 leukemic cells induced by tetradecanoyl phorbol acetate (TPA). Wright-Giemsa staining was performed to observe morphological changes in the HL-60 cells, and flow cytometry was used to assess the cell cycle and CD11b, CD14, CD13, and CD33 expression. PBK/TOPK levels were determined by Western blot analysis. After treating HL60 cells with 5.1×10⁻⁹ mmol/L of TPA for three days, the number of nitroblue-tetrazolium-positive cells and CD11b, CD13, and CD14 expression increased, whereas the PBK/TOPK levels decreased. TPA can inhibit proliferation and induce differentiation of HL60 cells of the granulocytic or monocytic lineage. PBK/TOPK expression was downregulated during this process, whereas the Pho-PBK/TOPK expression was increased.
    Preview · Article · May 2012 · Asian Pacific journal of cancer prevention: APJCP
  • [Show abstract] [Hide abstract]
    ABSTRACT: About 50% of all malignant peripheral nerve sheath tumors (MPNSTs) arise as neurofibromatosis type 1 associated lesions. In those patients malignant peripheral nerve sheath tumors are thought to arise through malignant transformation of a preexisting plexiform neurofibroma. The molecular changes associated with this transformation are still poorly understood. We sought to test the hypothesis that dysregulation of expression of kinases contributes to this malignant transformation. We analyzed expression of all 519 kinase genes in the human genome using the nanostring nCounter system. Twelve cases of malignant peripheral nerve sheath tumor arising in a background of preexisting plexiform neurofibroma were included. Both components were separately sampled. Statistical analysis compared global changes in expression levels as well as changes observed in the pairwise comparison of samples taken from the same surgical specimen. Immunohistochemical studies were performed on tissue array slides to confirm expression of selected proteins. The expression pattern of kinase genes can separate malignant peripheral nerve sheath tumors and preexisting plexiform neurofibromas. The majority of kinase genes is downregulated rather than overexpressed with malignant transformation. The patterns of expression changes are complex without simple recurring alteration. Pathway analysis demonstrates that differentially expressed kinases are enriched for kinases involved in the direct regulation of mitosis, and several of these show increased expression in malignant peripheral nerve sheath tumors. Immunohistochemical studies for the mitotic regulators BUB1B, PBK and NEK2 confirm higher expression levels at the protein level. These results suggest that the malignant transformation of plexiform neurofibroma is associated with distinct changes in the expression of kinase genes. The patterns of these changes are complex and heterogeneous. There is no single unifying alteration. Kinases involved in mitotic regulation are particularly enriched in the pool of differentially expressed kinases. Some of these are overexpressed and are therefore possible targets for kinase inhibitors.Modern Pathology advance online publication, 1 February 2013; doi:10.1038/modpathol.2012.242.
    No preview · Article · Feb 2013 · Modern Pathology
Show more