Soil analysis procedures extraction with 0.01 M CaCl2 as extraction reagent

Communications in Soil Science and Plant Analysis (Impact Factor: 0.39). 05/2000; 31(9). DOI: 10.1080/00103620009370514
Source: OAI


This publication gives details of laboratory procedures for the determinations of bioavailable (e.g., plants) quantities of nutritional and polluting inorganic elements in 0.01 M CaCl2 extracts of air‐dry soil samples. Air‐day soil samples are extracted for two hours with a 0.01 M CaCl2 solution of 20°C in a 1:10 extraction ratio (W/V). After measuring the pH in the settling suspension, the concentrations of nutritional and polluting elements are measured in the clear centrifugate or filtrate. The procedure is simple, easy to perform, and cheap (labor, chemicals) in daily use in routine soil laboratories. The method receives internationally more and more attention as an alternative for the many extraction procedures for a single nutrient or pollutant that are still in use nowadays. The soil is extracted with a solution what has more or less the same ionic strength as the average salt concentration in many soil solutions. Various nutrients and metals can be measured in a single extract that allows considering relationships between them during interpretation of the data. For most elements, different detection techniques are described in detail in this publication. Detailed laboratory procedures are described for the determination of pH, total dissolved organic carbon, nitrate, ammonium, total dissolved nitrogen, sulphate, total dissolved sulfur, ortho‐phosphate, total dissolved phosphate, sodium, potassium, magnesium, cadmium, copper, nickel, lead, aluminum, iron, arsenic, boron, and phenols. Since only one extract of soil samples is used, profitable use can be made of multi‐element detection techniques like segmented‐flow analysis spectrometry, ICP‐OES, and ICP‐MS.

917 Reads
    • "We measured mineral plant available N and P in the soil using the standard CaCl 2 extraction method (Houba et al., 2000). We quantified the concentrations of N, P and C in the root litter prior to incubation for each root species on a subsample of each root litter pool comprising two individual plants, resulting in four independent litter samples for chemical analysis per species. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Living plants can enhance litter decomposition rates via a priming effect by releasing root exudates which provide energy to saprotrophic microbes and thereby enable them to degrade litter faster. The strength of this effect, however, is expected to be dependent on the litter properties. To test whether the presence of a growing plant affects the decomposition rate of dead roots with different traits, we used dead roots of seven species (3 grasses, 3 legumes, 1 forb) as litter and quantified litter mass loss after eight weeks of incubation in soil with or without a growing white clover (Trifolium repens) plant. We expected root decomposition to be faster in the presence of T. repens, especially for roots with high C:N ratio. We found that the presence of T. repens slowed down the decomposition of grass and forb roots (negative priming), while it did not significantly affect the decomposition of legume roots. Our results show that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the properties of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. Negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.
    No preview · Article · Mar 2016 · Soil Biology and Biochemistry
  • Source
    • "CaCl 2 , Ca(NO 3 ) 2 and BaCl 2 , extract fractions that have been used to denote metal availability to plants as shown in some studies (Peijnenburg et al., 2007; Meers et al., 2007a). Extraction with 0.01 M CaCl 2 has been suggested for estimating metal availability (Novozamsky et al., 1993; Houba et al., 2000) and gives a good indication of metal availability to plants (Meers et al., 2007b). The metal fraction extracted by EDTA is used to denote potentially available and mobile metal due to the strong metal complexing ability of EDTA (Anju and Banerjee, 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction.
    Full-text · Article · Feb 2016 · Environmental Pollution
  • Source
    • "Therefore, the use of organic acids may reasonably depict the amount of metal available for plant uptake. Other chemical methods that may be used to predict metal availability include the use of CaCl 2 that extracts weakly adsorbed metal ions from soil (Houba et al. 2000) or the use of the synthetic chelating agent, ethylenediaminetetraacetic acid (EDTA), which forms strong complexes with many heavy metals in soil. Soil quality also plays a role in the availability of heavy metals. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Laportea peduncularis is a medicinal plant consumed by the native communities in South Africa. Due to its oral consumption, its potential for harming the human health and the distribution of metals in the leaves of L. peduncularis as a function of soil characteristics were evaluated. Broadly, the concentrations of metals in the soil were in decreasing order of Fe > Ca > Mg > Mn > Zn > Cr > Cu > Ni > As > Co > Cd > Pb. Low-molecular-weight organic acid, calcium chloride, and ethylenediaminetetraacetic acid extraction methods were employed to assess for exchangeable forms of metals in the soil. Geoaccumulation indices and enrichment factors showed no contamination or enrichment for most of the heavy metals studied except for Cd, which showed moderate contamination and significant enrichment at Mona, KwaZulu-Natal. Principal component and cluster analyses revealed that As, Cd, Fe, and Ni in the soil came from the same source, whilst Cu, Pb, and Zn in the soil were from a common origin. Correlation analysis showed significantly positive correlation between heavy metals As, Cd, Fe, and Ni in the soil, as well as between Cu, Pb, and Zn, confirming the metals’ common origin. Concentrations of metals in plants and soil were influenced by site, but the availability and uptake of the metals solely depended on the plant’s inherent controls.
    Full-text · Article · Feb 2016 · Environmental Monitoring and Assessment
Show more