Content uploaded by Linda Ashley
Author content
All content in this area was uploaded by Linda Ashley
Content may be subject to copyright.
1
Journal of Aging and Physical Activity, 2009, 17, 1-23
© 2009 Human Kinetics, Inc.
Physical Benets of Dancing for Healthy
Older Adults: A Review
Justin W.L. Keogh, Andrew Kilding, Philippa Pidgeon, Linda
Ashley, and Dawn Gillis
Dancing is a mode of physical activity that may allow older adults to improve their
physical function, health, and well-being. However, no reviews on the physical ben-
ets of dancing for healthy older adults have been published in the scientic litera-
ture. Using relevant databases and keywords, 15 training and 3 cross-sectional studies
that met the inclusion criteria were reviewed. Grade B–level evidence indicated that
older adults can signicantly improve their aerobic power, lower body muscle endur-
ance, strength and exibility, balance, agility, and gait through dancing. Grade C evi-
dence suggested that dancing might improve older adults’ lower body bone-mineral
content and muscle power, as well as reduce the prevalence of falls and cardiovascular
health risks. Further research is, however, needed to determine the efcacy of differ-
ent forms of dance, the relative effectiveness of these forms of dance compared with
other exercise modes, and how best to engage older adults in dance participation.
Keywords: dance, exercise, falls, functional ability
The aging process causes many changes in body composition and physiologi-
cal function. Older adults typically have signicantly greater body fat percentage,
reduced muscle mass (Fiatarone-Singh, 2002; Young, Stokes, & Crowe, 1985),
and less muscle strength and endurance (Harridge, Magnusson, & Saltin, 1997;
Hurley, Ree, & Newham, 1998; Imrhan & Loo, 1989), balance (Doyle, Dugan,
Humphries, & Newton, 2004; Hsiao-Wecksler & Robinovitch, 2007), and aerobic
power (Harridge et al.; Wiebe, Gledhill, Jamnik, & Ferguson, 1999) than young
adults. Although these reductions in body composition and physiological function
might be multifactorial in origin (Barry & Carson, 2004; Enoka et al., 2003), they
typically result in diminished levels of functional ability. This can be readily seen
in older adults taking longer to complete tasks such as the timed up-and-go, sit-to-
stand, stair climb, or timed walk (Hurley et al.; Steffen, Hacker, & Mollinger,
2002; Wagner & Kauffman, 2001). Of great concern is that a loss of these func-
tional abilities can result in a rapid downward spiral for the older adult (see Figure
1). This may involve an increased incidence of falls (Dite & Temple, 2002; Shum-
Keogh, Kilding, Pidgeon, and Ashley are with the School of Sport and Recreation, and Keogh, Kilding,
and Gillis, the Centre for Physical Activity and Nutrition Research, AUT University, Auckland, New
Zealand.
JAPA GALLEY PROOF
2 Keogh et al.
way-Cook, Brauer, & Woollacott, 2000), an increase in the fear of falling (Brou-
wer, Musselman, & Culham, 2004; Liu-Ambrose, Khan, Eng, Lord, & McKay,
2004), a reduction in gait (walking) velocity (Whitney, Marchetti, Morris, &
Sparto, 2007), and a reduced level of daily incidental physical activity (Brouwer
et al.; Carter, Williams, & Macera, 1993). This reduction in physical activity then
further increases the risk of falling and of developing chronic diseases such as
diabetes, stroke, cardiac infarction, and cancer (American College of Sports Med-
icine, 1998; Enoka, 1997; Fiatarone-Singh). Because falls-related injuries and
many chronic diseases are expensive to treat, at both an economical and social
level (Campbell et al., 2005; Gillespie et al., 2003), preventive methods to attenu-
ate falls-related injury and chronic disease in older adults should be investigated.
Exercise Benets for Older Adults
Numerous studies have found that exercise, be it resistance training (Deley et al.,
2007; Keogh, Morrison, & Barrett, 2007; Liu-Ambrose, Khan, Eng, Janssen et al.,
2004; Schlicht, Camaione, & Owen, 2001), aerobic exercise (Deley et al.; Seals,
Hagberg, Hurley, Ehsani, & Holloszy, 1984), balance training (Liu-Ambrose,
Khan, Eng, Janssen et al.; Nnodim et al., 2006), Tai Chi (Hill, Choi, Smith, &
Condron, 2005; Nnodim et al.), or even Tae Kwon Do (Cromwell, Meyers,
Meyers, & Newton, 2007) might offer many signicant physical benets for older
adults. These benets might include improvements in body composition, muscle
strength and endurance, aerobic power, balance, functional ability in activities of
daily living, and reduced incidence of falls. Unfortunately, each of these exercise
modes will not necessarily result in all of these adaptations, and not all older
adults are likely to commence, let alone adhere to, programs involving these forms
of exercise.
A review by Fiatarone-Singh (2002) indicates that although resistance train-
ing can signicantly increase older adults’ muscle mass, muscle strength, power,
and endurance, its effects on aerobic endurance and balance are less well demon-
Figure 1 — Relationship between functional ability, falls rate, fear of falling, and level of
physical activity in older adults.
JAPA GALLEY PROOF
Benets of Dance 3
strated. Conversely, although aerobic exercise may signicantly increase older
adults’ aerobic power and reduce their body fat percentage and risk of cardiovas-
cular disease, it has less effect on balance, muscle strength, power, and endurance
(Fiatarone-Singh). It is also known that exercise preferences of older individuals
vary considerably (Mills, Stewart, Sepsis, & King, 1997; Wilcox, King, Brassing-
ton, & Ahn, 1999). This means that older adults who enjoy walking (and therefore
regularly walk) might not necessarily be keen to participate in resistance- or bal-
ance-training programs. Thus, investigations into the benets of various forms of
exercise for older adults are warranted.
Possible Benets of Dance for Older Adults
Judge (2003) has proposed that dancing would be a benecial form of physical
activity for older adults, with its primary physical benets being improved bal-
ance and a reduced risk of falls. This assertion appears to be based on the fact that
many forms of dance (a) are similar to Tai Chi and Tae Kwon Do in that they are
generally performed in an upright posture and require substantial periods of uni-
lateral stance and the transfer of the line of gravity (vertical line through the body’s
center of mass) outside the base of support (Cromwell et al., 2007; Hill et al.,
2005; Judge; Nnodim et al., 2006), (b) can involve moderate to moderately high
ground-reaction forces and joint torques (Lin, Su, & Wu, 2005; Michaud, Rodri-
guez-Zayas, Armstrong, & Hartnig, 1993; Simpson & Kanter, 1997), and (c) can
result in relatively high heart rates (68–90% of age-predicted maximum heart
rate), levels of oxygen consumption (42–90% of VO2max), or ratings of perceived
exertion (up to 14 out of 20) in young (Guidetti, Emerenziani, Gallotta, & Baldari,
2007; Ozkan & Kin-Isler, 2007; Peidro et al., 2002; Wigaeus & Kilbom, 1980)
and older (Grant et al., 2002; Peidro et al.) adults.
Because dance can take many forms, be performed in a variety of settings,
and does not necessarily require much expense or equipment, it might appeal to a
wide range of individuals of all ages. Dancing may be less threatening to many
older adults than other exercise modes, given that many older individuals will
have had positive experiences of dance when they were younger (Dunlap & Barry,
1999; Lima & Vieira, 2007). Dance might also be an important promoter of suc-
cessful and healthy aging (Connor, 2000; Lima & Vieira; Wikstrom, 2004).
According to Connor, Lima and Vieira, and Wikstrom, dance might allow older
adults to maintain a connection to everyday life because it encourages fun and
enjoyment and promotes social interaction, a sense of community, appreciation of
aesthetics and continued health, physical activity, and mobility. Because of these
factors, dancing would appear to be a form of physical activity that may be more
likely to be adopted as part of many older adults’ exercise programs than other
exercise modes. Although dance has been shown to have considerable physical
benets for middle-aged and older adults with arthritis, osteoporosis, and neuro-
logical conditions (Berrol, Ooi, & Katz, 1997; Hackney, Kantorovich, & Earhart,
2007; Kudlacek, Pietschmann, Bernecker, Resch, & Willvonseder, 1997; Marks,
2005; Moffet, Noreau, Parent, & Drolet, 2000), no reviews on the physical bene-
ts of dance for healthy older adults have yet been published.
JAPA GALLEY PROOF
4 Keogh et al.
Methods
Literature-Search Methods
A search of Medline (PubMed), CINAHL, SportDiscus, ProQuest 5000 Interna-
tional, and Google Scholar was conducted using the keywords dance, dancing,
older adults, elder, and all of their derivatives. Additional search strategies
included using the “Related Articles” option in PubMed and perusing the refer-
ence lists of articles found in the initial searches. To be included in this review, the
studies had to have been published in peer-reviewed journals and involve groups
of apparently healthy older adults (>60 years old), who as a group were not all
diagnosed with medical conditions such as Parkinson’s disease, arthritis, or osteo-
porosis. These studies had to either compare a group of older dancers with an
age-matched group of nondancers or involve an exercise intervention that was
primarily dance based and lasted at least 8 weeks. Studies that used any form of
dance, such as more traditional folkloric dance, as well as those that used more
tness-associated aerobic and line dancing, were included. In addition, no restric-
tion was applied on the language or year in which the article was published.
Data Analysis
In accordance with Toussant and Kohia’s (2005) review on the benets of physical
therapy for older hip-fracture patients, we wished to critique the design of each of
the studies reviewed to describe the certainty of our recommendations. To achieve
these aims we used the critical evaluation methods of Megens and Harris (1998)
and Sackett (1989). Using these scales, each study reviewed was categorized
using a 5-point scale. Level I studies were large randomized controlled trials,
dened as those with more than 100 participants, in which the level of false posi-
tives and false negatives would likely be low. Level II studies were smaller ran-
domized controlled trials (<100 participants) that had greater chances for false
positives or false negatives to occur. Level III studies were nonrandomized, con-
current, cohort comparisons. Level IV studies were nonrandomized studies that
compared older adults who received the intervention (i.e., were regular dancers)
with those who were nondancers. Level V studies were case series or studies in
which no control group was used. The recommendations given were as follows:
Grade A recommendations required the support of at least one Level I study,
Grade B recommendations required the support of at least one Level II study, and
Grade C recommendations required the support of at least one Level III, IV, or V
study (Megens & Harris; Sackett).
The scientic rigor of each study was also evaluated using six criteria (Megens
& Harris, 1998; Sackett, 1989): having inclusion and exclusion criteria clearly
described, having the dance program adequately described, use of reliable out-
come measures, use of valid outcome measures, having assessors blinded to treat-
ment allocation, and having participants in the study accounted for. Studies labeled
with Y for “yes” in Table 1 fullled the specic criteria; those with an N for “no”
indicate that the criteria were not reached. In order for a study to be given a Y for
the reliability and validity criteria, they had to report their own adequately high
experimental reliability or validity data, refer to other studies that had shown high
JAPA GALLEY PROOF
5
Table 1 Evaluative Criteria for the Training Studies Reviewed
Study
Inclusion and
exclusion criteria
Treatment can
be replicated
Reliability of
outcome
measures
Validity of
outcome
measures
Blind assessment
of outcome
measures
Account for
attrition
Engels, Drouin, Zhu, &
Kazmierski (1998)
Y Y Y Y N N
Eyigor, Karapolat, Durmaz,
Ibisoglu, & Cakir (2009)b
Y Y Y Y Y N
Federici, Ballagamba, &
Rocchi (2005)b
Y Y Y Y N Ya
Hackney et al. (2007)bY Y Y Y Y Ya
Holmerová et al. (personal
communication)b
Y Y Y Y Y Ya
Hopkins, Murrah, Hoeger, &
Rhodes (1990)b
Y Y Y Y N N
Jeon et al. (2005) Y Y ? ? N N
Jeon, Ounpuu, & Davis
(2000)
Y Y N N N N
Kim, June, & Song (2003) Y Y Y Y N N
Kudlacek et al. (1997) Y ? Y Y N Ya
McKinley et al. (2008)bY Y Y Y Y N
Shigematsu et al. (2002)bY Y ? ? Y N
Soanidis, Hatzitaki, Douka,
& Grouios (2009)b
Y Y Y Y N N
Song, June, Kim, & Jeon
(2004)
Y N Y Y Y N
Young, Weeks, & Beck
(2007)b
Y Y Y Y N N
Note. Y = yes; N = no; ? = unclear or only partially.
aThese studies accounted for all participants in their pre–post analyses, although this might have just been because they had no dropouts. bStudies were randomized
controlled trials.
JAPA GALLEY PROOF
6 Keogh et al.
levels of reliability and validity, or use tests that are widely considered criterion or
gold standard.
Results
A relatively small number of peer-reviewed (3 cross-sectional and 15 training)
studies were found that examined the physical benets of dance for healthy older
adults. Nine of the 15 training studies were categorized as being Level II (Eyigor
et al., 2009; Federici et al., 2005; Hackney et al., 2007; Holmerová et al., personal
communication; Hopkins et al., 1990; McKinley et al., 2008; Shigematsu et al.,
2002; Soanidis et al., 2009; Young, Weeks, & Beck, 2007), with the other six
training studies being Level III–V (Engels et al., 1998; Jeon et al., 2005; Jeon et
al., 2000; Kim et al., 2003; Kudlacek et al., 1997; Song et al., 2004). All three
cross-sectional studies were categorized as being Level IV (Uusi-Rasi et al., 1999;
Verghese, 2006; Zhang, Ishikawa-Takata, Yamazaki, Morita, & Ohta, 2008).
Across these 18 studies, a variety of dance forms and outcome measures were
used. Of the 15 training studies, the most common forms of dance were traditional
Korean (Jeon et al., 2005; Jeon et al., 2000; Kim et al.; Song et al.) and aerobic
(Engels et al.; Hopkins et al.; Shigematsu et al.) dance. Aerobic power, muscle
endurance and strength, and static and dynamic balance were the most commonly
assessed outcome measures. Some studies also investigated changes in body com-
position, gait performance, prevalence of falls, and cardiovascular risk factors.
Cross-Sectional Studies
As summarized in Table 2, three cross-sectional studies compared the physical
function of older dancers with that of older nondancers (Uusi-Rasi et al., 1999;
Verghese, 2006; Zhang et al., 2008). These studies found that compared with older
nondancers, the older dancers had signicantly greater bone-mineral content,
aerobic power, muscle strength, muscle endurance, muscle power, balance, and
gait speed. Verghese also observed that older dancers’ gait was characterized by a
signicantly longer stride length and swing time, as well as shorter stance and
double-support times, than the nondancers. The gait differences reported by Ver-
ghese appear indicative of the older dancers’ having a more powerful and stable
gait pattern than their nondancing peers (Judge, Ounpuu, & Davis, 1996; Maki,
1997). Zhang et al. also found that older dancers had a signicantly lower body-
mass index and prevalence of diabetes and hypertension than older nondancers.
Training Studies
Fifteen longitudinal studies investigated the chronic physical benets of dancing
for older adults, and the results of these studies are summarized in Tables 3 and 4.
In Table 3, the results of nine studies that assessed changes in body composition
and/or physical tness are presented. Six of these nine studies reported signicant
increases in the muscle endurance of older adults (Engels et al., 1998; Eyigor et
al., 2009; Holmerová et al., personal communication; Hopkins et al., 1990;
McKinley et al., 2008; Young et al., 2007). Three studies reported signicant
increases in the older adults’ aerobic power (Engels et al.; Eyigor et al.; Hopkins
JAPA GALLEY PROOF
7
Table 2 Cross-Sectional Studies That Compared the Body Composition, Physical Fitness, and Functional Ability of
Older Dancers And Nondancers
Study Participants
Body
composition
Aerobic
power
Muscle
endurance
Muscle
strength
Muscle
power
Static
balance
Dynamic
balance/agility Gait speed
Uusi-Rasi
et al.
(1999)
117 M gymnasts
and folk danc-
ersa 62 ± 5 y,
116 M controls
62 ± 5 y
4% greater tibia-
shaft BMC and
8% distal-tibia
BMC in danc-
ers*
13% greater
VO2max in
dancers*
10% greater
knee-
extension
strength in
dancers*
13% greater
jump
height in
dancers*
8% faster gure-8
running in
dancers*
Verghese
(2006)
24 M and F social
dancers 80 y,
84 M and F
controls 81 y
13% quicker
5 STS in
dancers
10% greater
grip
strength in
dancers
41% greater
1-leg-
stance
time in
dancers*
13% greater
normal gait
speed in
dancers*
Zhang et
al. (2008)
112 M and F
social dancers,
112 M and F
controls, 50–87
y entire group
13% greater
postural-
stability
index in
dancers*
11% greater
maximum
gait speed
in dancersb
Note. M = male; y = years old; F = female; BMC = bone-mineral content; STS = sit-to-stand. Although the 5 STS time is considered a muscle-endurance measure in this table, it
could also be considered a measure of muscle strength.
aThis group consisted of 98 Finnish rhythmic gymnasts and 19 Finnish folk dancers. bThe between-groups difference approached signicance (p = .053).
*Signicantly better (p < .05) performance in dancers than controls (nondancers).
JAPA GALLEY PROOF
8
Table 3 Changes in Older Adults’ Body Composition and Physical Fitness as a Consequence of
Contemporary/Traditional and Aerobic Dance
Changes in Body Composition and Physical Fitness
Study Participants Dance style Duration Frequency
Body
composition
Aerobic
power Flexibility
Muscle
endurance
Muscle
strength
Contemporary/Traditional Dance
Eyigor et al.
(2009)
E 19 M 74 ± 8
y, C 18 M
71 ± 6 y
Turkish folk-
loristic
8 weeks 3/week 60
min/ses-
sion +
2/week
walking
for 30
min/ses-
sion
+17% 6-min
walk*,
+3%
6-min
walk
−19% 5
STS
time*,
−2%
5 STS
time
Holmerová et
al. (personal
communication)
E 27 M and
F 81 ± 10
y, C 25 M
and F 83 ±
8 y
Mixed ball-
room
3 months 1/week 60
min/ses-
sion
+77% sit-and-
reach*, −12%
sit-and-reach*
+38% 30-s
STS*,
−14%
30-s
STS*
Jeon et al. (2000) E 15 M, C 14
M, 65–75
y entire
group
Korean tradi-
tional
12 weeks 3/week 50
min/ses-
sion
+34% leg
ext*,
−10%
leg ext
Kudlacek et al.
(1997)
13 nonosteo-
porotic M
65 ± 2 y
Folkloristic,
Viennese
waltz, and
aerobic
12
months
3.3 ± 0.8 hr/
week
0% lumbar
BMD
(continued)
JAPA GALLEY PROOF
9
Table 3 (continued)
Changes in Body Composition and Physical Fitness
Study Participants Dance style Duration Frequency
Body
composition
Aerobic
power Flexibility
Muscle
endurance
Muscle
strength
Contemporary/Traditional Dance
McKinley et al.
(2008)
E 14 M and F
78 ± 8 y,
walking 11
M and F 75
± 8 y
Argentine
tango
10 weeks 2/week 90
min/ses-
sion
−24% 5
STS
time*,
−13%
5 STS
time
Aerobic/Line Dance
Engels et al.
(1998)
E + hand weights 12
M and F, E no
hand weights 11
M and F, C 11 M
and F; 67 ± 6 y
entire group
Aerobic 10 weeks,
10
weeks
3/week 60 min/
session, 3/
week 60
min/session
−2% ∑ skin-
folds, 0% ∑
skinfolds,
−2% ∑ skin-
folds
+10%
VO2max*,
+9%
VO2max*,
−2%
VO2max
0% hip
exion,
+3% hip
exion,
−2% hip
exion
−21% 5 STS
time*,
−21%
5 STS
time*,
+4% 5
STS time
+10% elbow
ext, +10%
elbow ext,
0% elbow
ext
Hopkins et al.
(1990)
E 30 M 65 ± 4 y, C
23 M 66 ± 4 y
Aerobic 12 weeks 3/week 50 min/
session
−5% ∑ skin-
folds, −1% ∑
skinfolds
+13% half-
mile
walk*,
−4%
half-mile
walk
+9% sit-and-
reach*,
0% sit-
and-reach
+62% 30-s
STS*, 0%
30-s STS
(continued)
JAPA GALLEY PROOF
10
Table 3 (continued)
Aerobic/Line Dance
Shigematsu et al.
(2002)
E 20 M 79 ± 4 y, C
18 M 80 ± 5 y
Aerobic 12 weeks 3/week 60 min/
session
−9% 3-min-
walk
distance,
+4%
3-min-
walk
distance
−7% isomet-
ric squat
time, −7%
isometric
squat time
−3%
handgrip,
+2%
handgrip
Young et al.
(2007)
E 10 M 65 ± 8 y, E
+ squats 10 M 63
± 4 y, E + squats
+ foot stomps 12
M 65 ± 8 y
Line 12 months 1/week, squats
5/week,
squats + foot
stomps, 5/
week
0% lumbar
BMD, 0%
lumbar
BMD, −1%
lumbar
BMD
+150% squat
reps with
12 kg*,
+225%
squat
reps with
12 kg*,
+600%
squat reps
with 12
kg*
Note. E = experimental; M = male; y = years old; C = control; BMD = bone-mineral density, STS = sit-to-stand; ext = extension. Although the 5 STS time is considered
a muscle-endurance measure in this table, it could also be considered a measure of muscle strength.
*Indicates signicantly better (p < .05) performance in experimental than control group.
JAPA GALLEY PROOF
11
Table 4 Changes in Older Adults’ Falls Prevalence and Functional Ability as a Consequence of Contemporary/
Traditional and Aerobic Dance
Falls and Functional Ability Changes
Study Participants Dance style Duration Frequency
Falls
prevalence Static balance
Dynamic balance/
agility Gait speed
Contemporary/Traditional Dance
Eyigor et al.
(2009)
E 9 M 74 ± 8 y, C
18 M 71 ± 6 y
Turkish folk-
loristic
8 weeks 3/week 60 min/
session + 2/
week walking
for 30 min/
session
+2% Berg Bal-
ance*, 0%
Berg Balance
−11% stair-climb
time*, −2%
stair-climb
time
Federici et al.
(2005)
E 20 M and F 63 ±
4 y, C 20 M and
F 64 ± 4 y
Caribbean 3 months 2/week 30–60
min/session
+18% Rom-
berg*, 0%
Romberg
−13% SUG time*,
0% SUG time
Hackney et al.
(2007)a
E 9, Str & Flex 10;
M and F age
unknown
Argentine
tango
12 weeks 2/week 60 min/
session
+12% 1-foot
stance*,
+44% 1-foot
stance*
+14% gait veloc-
ity, +7% gait
velocity
Holmerová et
al. (personal
communication)
E 27 M and F 81
± 10 y, C 25 M
and F 83 ± 8 y
Mixed ball-
room
3 months 1/week 60 min/
session
−8% TUG time,
+16% TUG time
Jeon et al. (2005) E 130, C 123; M
and F 60–79 y
entire group
Korean tradi-
tional
12 weeks 3/week +27–34% 1-foot
stance*,
−11–0%
1-foot stance
(continued)
JAPA GALLEY PROOF
12
Table 4 (continued)
Falls and Functional Ability Changes
Study Participants Dance style Duration Frequency
Falls
prevalence Static balance
Dynamic balance/
agility Gait speed
Contemporary/Traditional Dance
Jeon et al. (2000) E 15, C 14; M
65–75 y entire
group
Korean tradi-
tional
12 weeks 3/week +5% balance
eyes closed*,
−21% bal-
ance eyes
closed
+31% walk with
turn*, −23% walk
with turn
McKinley et al.
(2008)
E 14 M and F 78
± 8 y, walking
11 M and F 75
± 8 y
Argentine
tango
10 weeks 2/week 90 min/
session
+17% ABC*, +2%
ABC
+16% gait veloc-
ity*, +12%
gait velocity
Soanidis et al.
(2009)
E 14 M and F 69 ±
4 y, C 12 M and
F 73 ± 5 y
Traditional
Greek
10 weeks 2/week 40–60
min/session
−41% ML
sway 1-foot
stance*,
−14% ML
sway 1-foot
stance
+21% trunk rotation
in ML weight-
shift task*, 0%
trunk rotation in
ML weight-shift
task
Song et al. (2004) E 46 M and F 76 ±
8 y, C 27 M and
F 74 ± 8 y
Korean tradi-
tional
6 months 3/week 50 min/
session
10% had a
fall*, 21%
had a fall
+5% SIP mobility*,
+37% SIP mobil-
ity
−39% SIP ambu-
lation*, +30%
SIP ambula-
tion
(continued)
JAPA GALLEY PROOF
13
Table 4 (continued)
Aerobic/Line Dance
Engels et al.
(1998)
E + hand weights
12 M and F,
E no hand
weights 11 M
and F, C 11 M
and F; 67 ± 6 y
entire group
Aerobic, aero-
bic
10 weeks,
10
weeks
3/week 60 min/
session, 3/
week 60 min/
session
+13% forward
reach, +7%
forward
reach, +2%
forward
reach
Hopkins et al.
(1990)
E 30 M 65 ± 4 y, C
23 M 66 ± 4 y
Aerobic 12 weeks 3/week 50 min/
session
+12% 1-foot
stance*, 0%
1-foot stance
−13% chair agility
time*, +3% chair
agility time
Shigematsu et al.
(2002)
E 20 M 79 ± 4 y, C
18 M 80 ± 5 y
Aerobic 12 weeks 3/week 60 min/
session
+10% forward
reach*, −3%
forward
reach
−19% cone walk
time*, +3% cone
walk time
Young et al. (2007)E 10 M 65 ± 8 y,
E + squats 10
M 63 ± 4 y, E
+ squats + foot
stomps 12 M 65
± 8 y
Line 12 months 1/week, squats 5/
week, squats
+ foot stomps
5/week
+186% 1-foot
stance*,
+86% 1-foot
stance*,
+115%
1-foot
stance*
10% TUG time*,
−20% TUG
time*, −20%
TUG time*
Note. E = experimental; M = male; C = control; y = years old; F = female; SUG = sit-up-and-go; Str & Flex = strength and exibility training; TUG = timed up-and-go; ABC =
activities-specic balance condence; ML = mediolateral; SIP = Sickness Impact Prole. A higher SIP score indicates a greater limitation in function.
aNo mean age was listed for either of the groups in this study, although the minimum age was 55 years. Furthermore, the “control” group was an exercise group that performed a
variety of resistance and exibility exercises for the same frequency and duration as the dance group.
*Signicantly better (p < .05) performance in experimental than control group.
JAPA GALLEY PROOF
14 Keogh et al.
et al.), and two found signicant increases in exibility (Holmerová et al., per-
sonal communication; Hopkins et al.). It is interesting that all of the studies that
investigated dance-related changes in the body composition of older adults found
no signicant change in adiposity (Engels et al.; Hopkins et al.) or bone-mineral
content of the lower limb (Kudlacek et al., 1997; Young et al., 2007).
Although increasing muscle endurance and aerobic power are important out-
comes for older adults, improving balance and functional ability and reducing
falls might be of even more benet. A summary of the 13 studies that investigated
changes in falls prevalence, balance, and functional ability are presented in Table
4. Most of these studies reported that dancing signicantly improved older adults’
static and dynamic balance. The gait performance of the older adults was also
markedly increased. Specically, signicant improvements in gait speed when
moving in a straight line, around obstacles, and up stairs (Eyigor et al., 2009;
Federici et al., 2005; Hackney et al., 2007; Hopkins et al., 1990; Jeon et al., 2000;
McKinley et al., 2008; Shigematsu et al., 2002; Song et al., 2004; Young et al.,
2007) also indicated an overall improvement in the older adults’ agility. Further-
more, and perhaps most important, dancing could also signicantly reduce the
prevalence of falls in older adults (Jeon et al., 2005).
Kim et al. (2003) also found that a 12-week dance program resulted in signi-
cant reductions in total cardiovascular health risk, as well as cholesterol and trig-
lyceride levels, of the older adults.
Grade Recommendations
Based on the results summarized in Tables 2–4, we propose a number of
recommendations.
Because none of the studies were randomized controlled trials involving more
than 100 participants, no recommendations could be given Level A status (Sack-
ett, 1989).
Grade B recommendations were as follows: A dance-based exercise program
can improve older adults’
• Aerobic power (Eyigor et al., 2009; Hopkins et al., 1990)
• Muscle endurance of the lower extremities (Eyigor et al., 2009; Holmerová et
al., personal communication; Hopkins et al.; McKinley et al., 2008; Young et
al., 2007)
• Muscle strength of the lower extremities (Eyigor et al.; McKinley et al.)
• Flexibility of the lower extremities (Holmerová et al., personal communication;
Hopkins et al.)
• Static balance (Eyigor et al.; Federici et al., 2005; Hackney et al., 2007; Hopkins
et al.; Shigematsu et al., 2002; Soanidis et al., 2009; Young et al., 2007)
• Dynamic balance and agility (Federici et al.; Hopkins et al.; McKinley et al.;
Shigematsu et al.; Soanidis et al.; Young et al., 2007)
• Gait speed (Eyigor et al.; Hackney et al.; McKinley et al.)
Grade C recommendations were as follows: A dance-based exercise program
for older adults may
• Increase bone-mineral content in the lower body (Uusi-Rasi et al., 1999)
JAPA GALLEY PROOF
Benets of Dance 15
• Increase muscle power of the lower extremities (Uusi-Rasi et al.)
• Reduce the rate of falls (Jeon et al., 2005)
• Reduce cardiovascular health risk (Kim et al., 2003; Zhang et al., 2008)
Discussion
Using the rules of evidence described by Sackett (1989), there is relatively strong
(i.e., Grade B) evidence that dancing can signicantly improve the aerobic power,
muscle endurance, strength, and exibility of the lower body; static and dynamic
balance/agility; and gait speed of older adults. Although the Grade B evidence
was based on only nine studies, the scientic rigor of these studies was generally
high (Eyigor et al., 2009; Federici et al., 2005; Hackney et al., 2007; Holmerová
et al., personal communication; Hopkins et al., 1990; McKinley et al., 2008;
Shigematsu et al., 2002; Soanidis et al., 2009; Young et al., 2007). With the
exception of Shigematsu et al., who might have used some “questionable” tests to
assess changes in the muscle endurance and strength of the older adults, the eight
other studies all had clear inclusion/exclusion criteria and clearly described dance
programs and used reliable and valid outcome measures.
Because of the relative strength of this literature, further development and
promotion of older-adult-specic dance classes, similar to that done with Tai Chi
and resistance training (Faber, Bosscher, Chin, & van Wieringen, 2006; Hill et al.,
2005; Liu-Ambrose, Khan, Eng, Janssen et al., 2004), might be recommended. If
the accessibility of such dance classes for older adults were to increase, we believe
that many older adults would dance, because there is considerable intragroup vari-
ability in the preferred forms of physical activity for older adults (Mills et al.,
1997; Wilcox et al., 1999), it might be less threatening to many older adults than
other exercise modes (Dunlap & Barry, 1999), and it can be an important pro-
moter of successful aging (Wikstrom, 2004).
The reader should, however, be aware of the limitations of this review and
hence regard some of these recommendations with a degree of caution. The major
limitations included the relatively small number of studies and the variety of dance
forms used in the studies, predominance of female participants in the studies, and
somewhat conicting evidence for the effect of dance on muscle strength. These
issues will now be discussed in further detail.
The review consisted of only 15 training and 3 cross-sectional studies. Within
this relatively small sample of literature, there was considerable diversity with
respect to the forms of dance used. The three cross-sectional studies used mixed
samples of older dancers, with ballroom, line, and Finnish folk dance being some
of the dance forms that the participants practiced most often. Of the 15 training
studies, 11 involved traditional forms of dance such as Korean, ballroom, Argen-
tine tango, Turkish folkloristic, Greek, and Caribbean and 4 used aerobic or line
dance. To dance purists, the inclusion of aerobic or even line dancing in this review
might seem inappropriate. Although we agree with this contention at an aesthetic
and creative level, we included these forms of dance for two reasons: these were
the relatively small number of eligible studies and because aerobic, line, and more
traditional dance styles appear to offer somewhat similar biomechanical and phys-
iological challenges to the older adult, with this appearing sufciently high to
JAPA GALLEY PROOF
16 Keogh et al.
cause improvements in many aspects of physical function (Grant et al., 2002;
Guidetti et al., 2007; Ozkan & Kin-Isler, 2007; Wigaeus & Kilbom, 1980). Inspec-
tion of the data found in Tables 2–4 indicated that older adults were able to obtain
signicant physical benets from traditional, as well as aerobic and line, dance
styles. This supports our contention that all forms of dance will have some physi-
cal benets for many older adults. However, any intradance variation in technical
requirements and movement patterns would still alter the biomechanical and/or
physiological demands of the dance style in some way, resulting in somewhat
specic adaptations to each dance form (Harris, Cronin, & Keogh, 2007; Schoene,
2007).
Of the 18 studies included in this review, 7 of the 15 training (Eyigor et al.,
2009; Hopkins et al., 1990; Jeon et al., 2000; Kim et al., 2003; Kudlacek et al.,
1997; Shigematsu et al., 2002; Young et al., 2007) and 1 of the 3 cross-sectional
(Uusi-Rasi et al., 1999) studies involved only female participants. Although the
other eight training (Engels et al., 1998; Federici et al., 2005; Hackney et al.,
2007; Holmerová et al., personal communication; Jeon et al., 2005; McKinley et
al., 2008; Soanidis et al., 2009; Song et al., 2004) and two cross-sectional (Ver-
ghese, 2006; Zhang et al., 2008) studies used mixed samples, these studies were
still typically dominated by female participants. Therefore, it is still somewhat
unclear whether older men can derive the same physical benets from dancing as
do older women.
In a number of the studies, the validity and reliability of several of the tests
and outcome measures may not have been sufciently high. For example, signi-
cant improvements in balance were often observed in static standing tasks (Fed-
erici et al., 2005; Hackney et al., 2007; Hopkins et al., 1990; Jeon et al., 2005;
Soanidis et al., 2009; Young et al., 2007). Because most falls occur during
dynamic activities such as walking, turning, and reaching (Judge, 2003; Lockhart,
Woldstad, & Smith, 2003; Overstall, 2004) and there is often a low correlation
between static and dynamic balance (Hrysomallis, McLaughlin, & Goodman,
2006), it is unclear whether changes in static balance would translate to an
improvement in overall physical function or a reduction in the falls rate in older
adults. Another possible issue is the use of the Berg Balance Scale (BBS) by
Eyigor et al. (2009) to assess changes in the dynamic balance of their participants.
Although the BBS is a validated measure of dynamic balance and functional abil-
ity in older adults (Berg, Wood-Dauphinee, Williams, & Maki, 1992), it is unclear
whether the statistically signicant change in the BBS reported by Eyigor et al.
for the dance group (preintervention 54.1 vs. postintervention 55.3) is of any clini-
cal signicance. The BBS involves 14 activities of daily living scored on a scale
of 0–4, where 0 means being unable to perform the task, and 4, being able to com-
plete the task based on the criterion (Berg et al.; Steffen et al., 2002). Because the
maximum score on the BBS is 56, this test can suffer ceiling effects in studies like
that of Eyigor et al., in which the older adults were well functioning before start-
ing the dance program. It could therefore be recommended that although the BBS
might be useful to describe the pretraining status of older adults in such studies,
its use as an outcome measure might be most appropriate for frailer older adults
who have lower pretraining scores.
There are similar concerns regarding the validity and reliability of some tests
of muscle function—for example, elbow-extension and handgrip strength and
JAPA GALLEY PROOF
Benets of Dance 17
half-squat isometric muscle endurance—used in some of the reviewed studies
(Engels et al., 1998; Shigematsu et al., 2002). The use of these potentially “ques-
tionable” tests may have contributed to the somewhat conicting results for the
effect of dancing on older adults’ muscle strength, whereby signicant increases
(Engels et al.; Eyigor et al., 2009; Jeon et al., 2000) and no signicant change
(Engels et al.; Shigematsu et al., 2002) were both reported.
The somewhat conicting results for the effect of dance on older adults’
muscle strength might also reect between-study differences in the specicity of
training and testing. The principle of specicity states that the greater the similar-
ity in factors such as posture, range of motion, velocity, and mode of contraction
between the training and testing tasks, the greater the training-related benets
(Harris et al., 2007). When comparing these studies, it was apparent that when
lower body strength was assessed, signicant increases in strength were demon-
strated (Engels et al., 1998; Eyigor et al., 2009; Jeon et al., 2000; McKinley et al.,
2008), whereas no signicant change in strength was found when upper body
strength was tested (Engels et al.; Shigematsu et al., 2002). Research indicates
that one of the primary stimuli for improving strength is the production of high
levels of force by specic muscle groups (Crewther, Cronin, & Keogh, 2005).
Because dance typically involves the production of substantially greater lower
than upper body forces and torques (Lin et al., 2005; Michaud et al., 1993; Simp-
son & Kanter, 1997), the dance-related signicant increases in lower but not upper
body strength are not surprising.
Conclusion
The results of this literature review demonstrate the potential for dancing to
improve the physical function of older adults. Although the size of this literature
sample is still relatively small, there appears sufcient Grade B evidence to sug-
gest that dancing can improve the aerobic power, lower body muscle endurance,
strength and exibility, static and dynamic balance/agility, and gait speed of older,
especially female, adults. The further development and promotion of older-adult-
specic dance classes would therefore be useful because it would provide older
adults with another physical activity option that might signicantly improve their
physical capabilities.
Future research in this area is most warranted and should concentrate on a
number of areas. Some research should investigate how best to structure dance
programs for older adults to maximize gains in physical function while ensuring
participant safety and enjoyment. This may involve investigating the optimal fre-
quency and duration of dancing, as well as comparing the relative effectiveness
and safety of a variety of dance styles with other activities such as Tai Chi and
resistance training. Because any group of older adults will have members with
varying physical abilities and limitations, these studies should use dance programs
that allow differentiation of ability and ensure appropriate progression for all par-
ticipants. Furthermore, research into the factors that inuence the uptake of and
adherence to a dance-based exercise program in this population should also be
conducted.
JAPA GALLEY PROOF
18 Keogh et al.
Acknowledgments
The authors wish to thank Sport and Recreation New Zealand (SPARC) for funding this
research. A preliminary report of this paper was presented at the 2007 New Zealand
Association of Gerontology Conference.
References
American College of Sports Medicine. (1998). Position stand: Exercise and physical activ-
ity for older adults. Medicine and Science in Sports and Exercise, 30(6), 992–1008.
Barry, B.K., & Carson, R.G. (2004). The consequences of resistance training for movement
control in older adults. The Journals of Gerontology. Series A, Biological Sciences
and Medical Sciences, 59(7), 730–754.
Berg, K.O., Wood-Dauphinee, S.L., Williams, J.I., & Maki, B. (1992). Measuring bal-
ance in the elderly: Validation of an instrument. Canadian Journal of Public Health,
83(Suppl. 2), S7–S11.
Berrol, C.F., Ooi, W.L., & Katz, S.S. (1997). Dance/movement therapy with older adults
who have sustained neurological insult: A demonstration project. American Journal
of Dance Therapy, 19(2), 135–160.
Brouwer, B., Musselman, K., & Culham, E. (2004). Physical function and health status
among seniors with and without a fear of falling. Gerontology, 50(3), 135–141.
Campbell, A.J., Robertson, M.C., La Grow, S.J., Kerse, N.M., Sanderson, G.F., Jacobs,
R.J., et al. (2005). Randomised controlled trial of prevention of falls in people aged
> or =75 with severe visual impairment: The VIP trial. British Medical Journal,
331(7520), 817.
Carter, J.S., Williams, H.G., & Macera, C.A. (1993). Relationships between physical activ-
ity habits and functional neuromuscular capacities in healthy older adults. Journal of
Applied Gerontology, 12(2), 283–293.
Connor, M. (2000). Recreational folk dance: A multicultural exercise component in healthy
ageing. Australian Occupational Therapy Journal, 47(2), 69–76.
Crewther, B., Cronin, J., & Keogh, J. (2005). Possible stimuli for strength and power
adaptation: Acute mechanical responses. Sports Medicine (Auckland, N.Z.), 35(11),
967–989.
Cromwell, R.L., Meyers, P.M., Meyers, P.E., & Newton, R.A. (2007). Tae Kwon Do: An
effective exercise for improving balance and walking ability in older adults. The
Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62(6),
641–646.
Deley, G., Kervio, G., Van Hoecke, J., Verges, B., Grassi, B., & Casillas, J.M. (2007).
Effects of a one-year exercise training program in adults over 70 years old: A study
with a control group. Aging Clinical and Experimental Research, 19(4), 310–315.
Dite, W., & Temple, V.A. (2002). A clinical test of stepping and change of direction to
identify multiple falling older adults. Archives of Physical Medicine and Rehabilita-
tion, 83(11), 1566–1571.
Doyle, T.L.A., Dugan, E., Humphries, B., & Newton, R.U. (2004). Discriminating between
elderly and young using a fractal dimension analysis of centre of pressure. Interna-
tional Journal of Medical Sciences, 1(1), 11–20.
Dunlap, J., & Barry, H.C. (1999). Overcoming exercise barriers in older adults. The Physi-
cian and Sportsmedicine, 27(11), 69–75.
Engels, H.J., Drouin, J., Zhu, W., & Kazmierski, J.F. (1998). Effects of low-impact, moder-
ate-intensity exercise training with and without wrist weights on functional capacities
and mood states in older adults. Gerontology, 44(4), 239–244.
JAPA GALLEY PROOF
Benets of Dance 19
Enoka, R.M. (1997). Neural adaptations with chronic physical activity. Journal of Biome-
chanics, 30(5), 447–455.
Enoka, R.M., Christou, E.A., Hunter, S.K., Kornatz, K.W., Semmler, J.G., Taylor, A.M., et
al. (2003). Mechanisms that contribute to differences in motor performance between
young and old adults. Journal of Electromyography and Kinesiology, 13, 1–12.
Eyigor, S., Karapolat, H., Durmaz, B., Ibisoglu, U., & Cakir, S. (2009). A randomized con-
trolled trial of Turkish folklore dance on the physical performance, balance, depres-
sion and quality of life in older women. Archives of Gerontology and Geriatrics,
48(1), 84–88.
Faber, M.J., Bosscher, R.J., Chin, A.P.M.J., & van Wieringen, P.C. (2006). Effects of exer-
cise programs on falls and mobility in frail and pre-frail older adults: A multicenter
randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 87(7),
885–896.
Federici, A., Bellagamba, S., & Rocchi, M.B. (2005). Does dance-based training improve
balance in adult and young old subjects? A pilot randomized controlled trial. Aging
Clinical and Experimental Research, 17(5), 385–389.
Fiatarone-Singh, M.A. (2002). Exercise comes of age: Rationale and recommendations for
a geriatric exercise prescription. The Journals of Gerontology. Series A, Biological
Sciences and Medical Sciences, 57(5), M262–M282.
Gillespie, L.D., Gillespie, W.J., Robertson, M.C., Lamb, S.E., Cumming, R.G., & Rowe,
B.H. (2003). Interventions for preventing falls in elderly people. Cochrane Database
of Systematic Reviews (Online : Update Software), 4, CD000340.
Grant, S., Corbett, K., Todd, K., Davies, C., Aitchison, T., Mutrie, N., et al. (2002). A
comparison of physiological responses and rating of perceived exertion in two modes
of aerobic exercise in men and women over 50 years of age. British Journal of Sports
Medicine, 36(4), 276–281.
Guidetti, L., Emerenziani, G.P., Gallotta, M.C., & Baldari, C. (2007). Effect of warm up
on energy cost and energy sources of a ballet dance exercise. European Journal of
Applied Physiology, 99(3), 275–281.
Hackney, M., Kantorovich, S., & Earhart, G. (2007). A study on the effects of Argentine
tango as a form of partnered dance for those with Parkinson disease and the healthy
elderly. American Journal of Dance Therapy, 29(2), 109–127.
Harridge, S., Magnusson, G., & Saltin, B. (1997). Life-long endurance-trained elderly men
have high aerobic power, but have similar muscle strength to non-active elderly men.
Aging, 9(1-2), 80–87.
Harris, N., Cronin, J., & Keogh, J. (2007). Contraction force specicity and its relationship
to functional performance. Journal of Sports Sciences, 25(2), 201–212.
Hill, K., Choi, W., Smith, R., & Condron, J. (2005). Tai Chi in Australia: Acceptable and
effective approach to improve balance and mobility in older people? Australasian
Journal on Ageing, 24(1), 9–13.
Hopkins, D.R., Murrah, B., Hoeger, W.W., & Rhodes, R.C. (1990). Effect of low-impact
aerobic dance on the functional tness of elderly women. The Gerontologist, 30(2),
189–192.
Hrysomallis, C., McLaughlin, P., & Goodman, C. (2006). Relationship between static and
dynamic balance tests among elite Australian footballers. Journal of Science and
Medicine in Sport, 9(4), 288–291.
Hsiao-Wecksler, E.T., & Robinovitch, S.N. (2007). The effect of step length on young and
elderly women’s ability to recover balance. Clinical Biomechanics (Bristol, Avon),
22(5), 574–580.
Hurley, M.V., Ree, J., & Newham, D.J. (1998). Quadriceps function, proprioceptive acuity
and functional performance in healthy young, middle-aged and elderly subjects. Age
and Ageing, 27, 55–62.
JAPA GALLEY PROOF
20 Keogh et al.
Imrhan, S.N., & Loo, C.H. (1989). Trends in nger pinch strength in children, adults, and
the elderly. Human Factors, 31(6), 689–701.
Jeon, M.Y., Bark, E.S., Lee, E.G., Im, J.S., Jeong, B.S., & Choe, E.S. (2005). The effects
of a Korean traditional dance movement program in elderly women. Taehan Kanho
Hakhoe Chi, 35(7), 1268–1276.
Jeon, M.Y., Choe, M.A., & Chae, Y.R. (2000). Effect of Korean traditional dance move-
ment training on balance, gait and leg strength in home bound elderly women. Journal
of Korean Academy of Nursing, 30(3), 647–658.
Judge, J.O. (2003). Balance training to maintain mobility and prevent disability. American
Journal of Preventive Medicine, 25(3, Suppl. 2) 150–156.
Judge, J.O., Ounpuu, S., & Davis, R.B., III. (1996). Effects of age on the biomechanics and
physiology of gait. Clinics in Geriatric Medicine, 12(4), 659–678.
Keogh, J.W., Morrison, S., & Barrett, R. (2007). Strength-training improves the tri-digit
nger-pinch force control of older adults. Archives of Physical Medicine and Reha-
bilitation, 88, 1055–1063.
Kim, C-G., June, K-J., & Song, R. (2003). Effects of a health-promotion program on car-
diovascular risk factors, health behaviors, and life satisfaction in institutionalized
elderly women. International Journal of Nursing Studies, 40(4), 375–381.
Kudlacek, S., Pietschmann, F., Bernecker, P., Resch, H., & Willvonseder, R. (1997). The
impact of a senior dancing program on spinal and peripheral bone mass. American
Journal of Physical Medicine & Rehabilitation, 76(6), 477–481.
Lima, M., & Vieira, A. (2007). Ballroom dance as therapy for the elderly in Brazil. Ameri-
can Journal of Dance Therapy, 29(2), 129–142.
Lin, C.F., Su, F.C., & Wu, H.W. (2005). Ankle biomechanics of ballet dancers in releve en
pointe dance. Research in Sports Medicine, 13(1), 23–35.
Liu-Ambrose, T., Khan, K.M., Eng, J.J., Janssen, P.A., Lord, S.R., & McKay, H.A. (2004).
Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone
mass: A 6-month randomized, controlled trial. Journal of the American Geriatrics
Society, 52(5), 657–665.
Liu-Ambrose, T., Khan, K.M., Eng, J.J., Lord, S.R., & McKay, H.A. (2004). Balance con-
dence improves with resistance or agility training. Increase is not correlated with
objective changes in fall risk and physical abilities. Gerontology, 50(6), 373–382.
Lockhart, T.E., Woldstad, J.C., & Smith, J.L. (2003). Effects of age-related gait changes on
the biomechanics of slips and falls. Ergonomics, 46(12), 1136–1160.
Maki, B.E. (1997). Gait changes in older adults: Predictors of falls or indicators of fear.
Journal of the American Geriatrics Society, 45(3), 313–320.
Marks, R. (2005). Dance-based exercise and Tai Chi and their benets for people with
arthritis: A review. Health Education, 105, 374–391.
McKinley, P., Jacobson, A., Leroux, A., Bednarczyk, V., Rossignol, M., & Fung, J. (2008).
Effect of a community-based Argentine tango dance program on functional balance
and condence in older adults. Journal of Aging and Physical Activity, 16(4), 435–
453.
Megens, A., & Harris, S.R. (1998). Physical therapist management of lymphedema fol-
lowing treatment for breast cancer: A critical review of its effectiveness. Physical
Therapy, 78, 1302–1311.
Michaud, T.J., Rodriguez-Zayas, J., Armstrong, C., & Hartnig, M. (1993). Ground reaction
forces in high impact and low impact aerobic dance. Journal of Sports Medicine and
Physical Fitness, 33(4), 359–366.
Mills, K.M., Stewart, A.L., Sepsis, P.G., & King, A.C. (1997). Consideration of older
adults’ preferences for format of physical activity. Journal of Aging and Physical
Activity, 5, 50–58.
JAPA GALLEY PROOF
Benets of Dance 21
Moffet, H., Noreau, L., Parent, E., & Drolet, M. (2000). Feasibility of an eight-week dance-
based exercise program and its effects on locomotor ability of persons with functional
Class III rheumatoid arthritis. Arthritis Care and Research, 13(2), 100–111.
Nnodim, J.O., Strasburg, D., Nabozny, M., Nyquist, L., Galecki, A., Chen, S., et al. (2006).
Dynamic balance and stepping versus Tai Chi training to improve balance and step-
ping in at-risk older adults. Journal of the American Geriatrics Society, 54(12), 1825–
1831.
Overstall, P. (2004). Falls and gait disorders in the elderly—Principles of rehabilitation. In
A.M. Bronstein, T. Brandt, M.H. Woollacott, & J.G. Nutt (Eds.), Clinical disorders of
balance, posture and gait (2nd ed., pp. 404–421). London: Arnold.
Ozkan, A., & Kin-Isler, A. (2007). The reliability and validity of regulating exercise inten-
sity by ratings of perceived exertion in step dance classes. Journal of Strength and
Conditioning Research, 21(1), 296–300.
Peidro, R.M., Osses, J., Caneva, J., Bion, G., Angelino, A., Kerbage, S., et al. (2002). Tango
modicaciones cardiorespiratorias durante el baile. Revista Argentina de Cardiologia,
70, 358–363.
Sackett, D.L. (1989). Rules of evidence and clinical recommendations on the use of anti-
thrombotic agents. Chest, 95, 2S–4S.
Schlicht, J., Camaione, D.N., & Owen, S.V. (2001). Effects of intense strength training on
standing balance, walking speed, and sit-to-stand performance in older adults. The
Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56(5),
M281–M287.
Schoene, L.M. (2007). Biomechanical evaluation of dancers and assessment of their chance
of injury. Journal of the American Podiatric Medical Association, 97(1), 75–80.
Seals, D.R., Hagberg, J.M., Hurley, B.F., Ehsani, A.A., & Holloszy, J.O. (1984). Endurance
training in older men and women I. Cardiovascular response to exercise. Journal of
Applied Physiology, 57(4), 1024–1029.
Shigematsu, R., Chang, M., Yabushita, N., Sakai, T., Nakagaichi, M., Nho, H., et al. (2002).
Dance-based aerobic exercise may improve indices of falling risk in older women.
Age and Ageing, 31(4), 261–266.
Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for
falls in community-dwelling older adults using the Timed Up & Go Test. Physical
Therapy, 80(9), 896–903.
Simpson, K.J., & Kanter, L. (1997). Jump distance of dance landings inuencing inter-
nal joint forces: I. Axial forces. Medicine and Science in Sports and Exercise, 29(7),
916–927.
Soanidis, G., Hatzitaki, V., Douka, S., & Grouios, G. (2009). Effect of a 10-week tradi-
tional dance program on static and dynamic balance control in elderly adults. Journal
of Aging and Physical Activity, 17(2), 167–180.
Song, R., June, K.J., Kim, C.G., & Jeon, M.Y. (2004). Comparisons of motivation, health
behaviors, and functional status among elders in residential homes in Korea. Public
Health Nursing (Boston, Mass.), 21(4), 361–371.
Steffen, T.M., Hacker, T.A., & Mollinger, L. (2002). Age- and gender-related test perfor-
mance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance
Scale, Timed Up & Go Test, and gait speeds. Physical Therapy, 82, 128–137.
Toussant, E.M., & Kohia, M. (2005). A critical review of literature regarding the effective-
ness of physical therapy management of hip fracture in elderly persons. The Journals
of Gerontology. Series A, Biological Sciences and Medical Sciences, 60(10), 1285–
1291.
Uusi-Rasi, K., Sievanen, H., Vuori, I., Heinonen, A., Kannus, P., Pasanen, M., et al. (1999).
Long-term recreational gymnastics, estrogen use, and selected risk factors for osteo-
porotic fractures. Journal of Bone and Mineral Research, 14(7), 1231–1238.
JAPA GALLEY PROOF
22 Keogh et al.
Verghese, J. (2006). Cognitive and mobility prole of older social dancers. Journal of the
American Geriatrics Society, 54(8), 1241–1244.
Wagner, M.B., & Kauffman, T.L. (2001). The aging process. In B.R. Bonder & M.B.
Wagner (Eds.), Functional performance in older adults (2nd ed., pp. 59–85). Phila-
delphia: FA Davis.
Whitney, S.L., Marchetti, G.F., Morris, L.O., & Sparto, P.J. (2007). The reliability and
validity of the Four Square Step Test for people with balance decits secondary to
a vestibular disorder. Archives of Physical Medicine and Rehabilitation, 88(1), 99–
104.
Wiebe, C.G., Gledhill, N., Jamnik, V.K., & Ferguson, S. (1999). Exercise cardiac function
in young through elderly endurance trained women. Medicine and Science in Sports
and Exercise, 31(5), 684–691.
Wigaeus, E., & Kilbom, A. (1980). Physical demands during folk dancing. European Jour-
nal of Applied Physiology, 45(2–3), 177–183.
Wikstrom, B.M. (2004). Older adults and the arts: The importance of aesthetic forms of
expression in later life. Journal of Gerontological Nursing, 30(9), 30–36.
Wilcox, S., King, A.C., Brassington, G.S., & Ahn, D.K. (1999). Physical activity prefer-
ences of middle-aged and older adults: A community analysis. Journal of Aging and
Physical Activity, 7, 386–399.
Young, A., Stokes, M., & Crowe, M. (1985). The size and strength of the quadriceps mus-
cles of old and young men. Clinical Physiology (Oxford, England), 5, 145–154.
Young, C.M., Weeks, B.K., & Beck, B.R. (2007). Simple, novel physical activity maintains
proximal femur bone mineral density, and improves muscle strength and balance in
sedentary, postmenopausal Caucasian women. Osteoporosis International, 18(10),
1379–1387.
Zhang, J.G., Ishikawa-Takata, K., Yamazaki, H., Morita, T., & Ohta, T. (2008). Postural sta-
bility and physical performance in social dancers. Gait & Posture, 27(4), 697–701.
JAPA GALLEY PROOF